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Abstract

Design Automation for Streaming Systems

by

Eylon Caspi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Wawrzynek, Chair

RTL design methodologies are struggling to meet the challenges of modern, large

system design. Their reliance on manually timed design with fully exposed device

resources is laborious, restricts reuse, and is increasingly ineffective in an era of

Moore’s Law expansion and growing interconnect delay. We propose a new hard-

ware design methodology rooted in an abstraction of communication timing, which

provides flexibly timed module interfaces and automatic generation of pipelined com-

munication. Our core approach is to replace inter-module wiring with streams, which

are FIFO buffered channels. We develop a process network model for streaming sys-

tems (TDFPN) and a hardware description language with built in streams (TDF).

We describe a complete synthesis methodology for mapping streaming applications

to a commercial FPGA, with automatic generation of efficient hardware streams and

module-side flow control. We use this methodology to compile seven multimedia

applications to a Xilinx Virtex-II Pro FPGA, finding that stream support can be rel-

atively inexpensive. We further propose a comprehensive, system-level optimization

flow that uses information about streaming behavior to guide automatic communi-

cation buffering, pipelining, and placement. We discuss specialized stream support

on reconfigurable, programmable platforms, with intent to provide better results and

1



compile times than streaming on generic FPGAs. We also show how streaming can

support an efficient abstraction of area, allowing an entire system to be reused with

automatic performance improvement on larger, next generation devices.

Professor John Wawrzynek, Chair Date
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Chapter 1

Introduction

1.1 System Design Challenges

The design of modern computational systems is driven by an incessant market demand

for systems to have more functionality, be faster, be smaller, last longer on battery,

and be cheaper. The industry’s success in meeting such a tall order has been fueled by

Moore’s Law, namely the uncanny ability of process engineers to put more transistors

on a chip each year. Technology improvements in recent years have reduced feature

sizes on chip by an average of 11%-16% per year, leading to improvements in clock

rates and to a doubling of transistor capacity every 1.5 to 2 years [ITRS, 2003].

Moore’s law improvements also bring a host of difficulties associated with large

system design and deep sub-micron (DSM) effects. Today’s largest systems involve

tens of millions of gates, or hundreds of millions of transistors1, necessitating a highly

modular design methodology and large teams of up to hundreds of engineers. One

of the greatest design challenges is the growing dominance of interconnect delay,

which owes to disproportionate improvements in wire speed versus logic speed at each

technology generation [Agarwal et al., 2000] [Sylvester and Keutzer, 1999]. Designers
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Chapter 1. Introduction

are forced to pipeline deeper to meet target clock rates, complicating designs further.

The large and often unpredictable impact of distance on performance leads to an

insidious timing closure problem, where design modifications intended to improve

performance may actually diminish it due to changes in area and layout. These

trends, and the inability of design automation tools to keep up, have resulted in a

design productivity gap, where the number of transistors available on chip is growing

58% per year, but the number of transistors programmed per man-month is growing

only 21% per year [ITRS, 1999].

Programmable platforms, such as field programmable gate arrays (FPGAs), have

emerged as a popular alternative to application specific integrated circuits (ASICs).

Since they are off-the-shelf components, FPGAs free system designers from many of

the DSM effects involved in transistor level chip design, including parasitics extrac-

tion, crosstalk, signal integrity, clock distribution, and electromigration. FPGA based

design also avoids the high cost of mask production for chip fabrication. Modern, high

capacity FPGAs can emulate millions of logic gates using software programmable

look-up tables, so they can accommodate a significant number of real world designs.

Furthermore, due to their regularity, FPGAs tend to be early adopters of new tech-

nology generations, bringing with them the promise of technology scaling without the

cost of fabricating a chip. Unfortunately, with such large device sizes, FPGA based

design suffers from many of the same large system and DSM effects as ASIC design,

including high design complexity, growing interconnect delay, and long run-times for

tools such as place-and-route. For example, routing typically accounts for 45%-65%

of the critical path on an FPGA [Xilinx, 2003a]. Thus, a productivity gap remains.

Despite the growing complexity and cost of system design, systems are regularly

discarded and redesigned with each new device generation. Hardware design method-

1 Some multi-million transistor systems—AMD Athlon 64 X2: 233M transistors [Mitchell, 2005],
IBM Cell: 241M transistors [Gschwind et al., 2005], nVidia GeForce 7800 GTX: 302M transistors
[Kirk, 2005].
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Chapter 1. Introduction

ologies tend to be very tied to the specific sizes and timings of a device. Consequently,

significant redesign is necessary to take full advantage of the greater area on a new

device, and to deal with disproportionate changes in logic and interconnect delays.

Engineers strive to reuse at least some modules of a design, but this reuse does not

mitigate the need for system redesign. The effort for engineering a system is not only

growing, it is being largely repeated from scratch.

Microprocessor architectures have allowed some designers to press on, blissfully

unaware of DSM difficulties and the productivity gap. Such architectures are pro-

grammed using instruction set architectures (ISA) that abstract away the underlying

circuit implementation. This abstraction also allows microprocessor software to sur-

vive and scale on compatible, next generation processors, riding Moore’s Law to better

performance. However, processor based systems have limited performance and limited

density (in terms of performance-per-dollar or performance-per-watt), so they cannot

serve the entire market. The loss in density comes from supporting the ISA abstrac-

tion, and increasingly from extra area devoted to parallelizing instruction streams

and overcoming long interconnect delay (e.g. large caches to hide memory access la-

tency). It is predicted that future improvements in microprocessor performance will

be strictly limited by interconnect delay, which limits the amount of state accessible in

each clock cycle [Agarwal et al., 2000]. To continue improving performance, designers

will be forced to abandon the trend towards larger, more complex microprocessors,

and instead consider more parallel architectures. Already today, many systems-on-

chip (SoC) combine one or more simple processors with many other cores, and their

designers are forced to deal with the hard issues of chip design.

We contend that many of the difficulties in modern system design stem from the

prevalent use of register transfer level (RTL) design methodologies, which fully expose

device timing. To increase productivity and design longevity, we must consider new

abstractions that hide or otherwise assist in dealing with technology limiters such

3



Chapter 1. Introduction

as interconnect delay and area. To this end, we shall propose an abstraction of

timing based on streams as a replacement for long wires. We shall also show how

streams support an efficient abstraction of area, given proper architectural support.

These abstractions will be supported and enforced by a language and an automatic

compiler for hardware. The abstractions enable a number of system-level analyses

and optimizations that are not possible in RTL-based design, which serve to improve

designer productivity and to promote reuse, retargeting, and scaling.

1.2 Limitations of RTL

The prevalent design abstraction for digital systems today is the register transfer level

(RTL) description, which specifies a timed signal flow through logic and registers. For

the sake of discussion, we distinguish the term timing, referring to picosecond mea-

sures such as signal delays and setup and hold times, from timing behavior, referring

to integer measures of machine cycles. An RTL description fully specifies the timing

behavior of a circuit, i.e. the cycle by cycle schedule of computation and communi-

cation. The design philosophy of RTL is that, to achieve a target clock rate, timing

should be predictable and exposed to the designer, and the designer should manually

pipeline the circuit accordingly. Design methodologies have improved by abstracting

from structural descriptions, involving netlists of logic and registers, to behavioral

descriptions, involving state machines. However, the basic paradigm of fully specified

timing behavior persists.

The growing dominance of interconnect delay on chip poses a serious difficulty

for RTL based design, since it makes timing unpredictable. For larger circuits, signal

delays become dependent on placement, which is normally determined only after syn-

thesis from RTL. Thus, it is not obvious how to best pipeline a circuit and choose its

timing behavior. The industry has attempted a number of approaches for improving
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Chapter 1. Introduction

timing predictability in large circuits, with limited success. Making placement ex-

plicit before RTL, i.e. floorplanning, is possible but requires significant design effort.

Physical synthesis attempts to feed timing information from placement back to guide

RTL transformations and resynthesis. However, its improvement on clock rate is lim-

ited (e.g. 5%-20% in Synplify Premiere [Synplicity, 2005b]), since it is not allowed to

introduce new pipeline stages or to modify visible timing behavior. Retiming can be

modified to consider interconnect delay by performing it during [Singh and Brown,

2002] or after [Weaver et al., 2003] placement, but it too is not allowed to introduce

new pipeline stages or to modify visible timing behavior. The delays in question grow

with each device generation, so ultimately, deeper pipelining is a necessity.

Large RTL designs are typically decomposed into small modules. On the surface,

this seems to improve timing predictability, since inside a small module, interconnect

delay would remain small and predictable. However, this approach merely exports

the problem to the level of inter-module connections, which themselves need to be

pipelined. Pipelining inter-module connections is usually not straightforward, since it

breaks the expected timing behavior of module interfaces. In the fully-timed world of

RTL design, a module’s internal behavior is coupled to its communication behavior,

which in turn is coupled to the behavior of other modules and the entire system. The

use of modules as design units, in and of itself, does nothing to decouple the modules

in time and nothing to address interconnect delay. In this sense, the philosophy of

fully timed RTL design is actually obstructive to modularity—it limits module reuse

in new timing environments, and it prevents modular optimizations that modify an

individual module’s timing behavior. A truly modular design methodology must be

more tolerant of changes in timing behavior.

5



Chapter 1. Introduction

1.3 Timing Tolerant System Composition

Believing that predictable timing is a lost cause, there are a number of efforts to make

timing more abstract to the designer. Most are based on timing tolerant interfaces

between modules.

1.3.1 Asynchronous Circuits

Asynchronous circuits take timing tolerance to the extreme by removing clocks alto-

gether and using handshaking to tolerate any delay. As a consequence, asynchronous

circuits accommodate pipelining by simple insertion of half buffer elements [Lines,

1995]. Unfortunately, asynchronous circuits are not well supported by design tools,

and they incur an area penalty for handshaking. A more practical approach is to in-

troduce handshaking and asynchrony only at a coarser granularity, between modules.

The GALS (globally asynchronous locally synchronous) approach involves conven-

tional, synchronous design within modules and pipelined, asynchronous interconnect

between modules. With this two-level hierarchy, interconnect between modules may

be packaged as IP (intellectual property) or as a network on chip (NOC), e.g. Nexus

[Lines, 2004].

1.3.2 Synchronous Standard Interfaces

It is not necessary to resort to asynchronous circuits in order to decouple the timing

behavior of modules. A purely synchronous handshaking protocol would suffice. Sev-

eral system on chip (SOC) interconnect standards exist which use such handshaking,

including CoreConnect [IBM, 1999], AMBA [ARM, 1999], and OCP [OCP, 2001].

Such standards provide conventions for module interfaces, along with IP blocks to

implement inter-module transport. However, only some packages provide a pipelined

6



Chapter 1. Introduction

transport to enable long distance communication at high clock rates, e.g. the SONICS

SiliconBackplane implementation of OCP [Sonics, 2005] point-to-point links.

A mere specification of interface conventions, as in the standards above, is only

slightly better than none at all. It puts the burden of conforming to the interface on

the module designer, including writing a state machine to sequence all the required

signals. It also puts the burden of choosing interconnect implementation parame-

ters on the designer, including pipelining depth, queue size, bit width, and so on.

These manual choices ultimately obstruct reuse, since they must be reconsidered

when porting to a next generation device, and changes may require reimplementation

of modules. Making reuse practical would require standard interface packages to pro-

vide automation for choosing interconnect parameters and for regenerating module

interfaces. Our streaming design methodology does provide that automation.

1.3.3 Latency Insensitive Design

Latency insensitive design (LID) [Carloni et al., 2003] [Carloni et al., 2001] is a

more transparent approach to system composition, providing automatic inter-module

pipelining without handshaking or modification of modules. Pipelining inter-module

wires changes the arrival time of signals, and may cause the inputs of a module to

arrive out of phase. To retain correct behavior, LID specifies that a module must stall

until a complete, matched set of its inputs has arrived. Each module is embedded

in a shell that stalls the module via clock gating and provides queueing to realign

inputs in time. The required queue depths and schedule of stalls are in fact static

and fully predictable from the interconnect pipelining depths. Thus, the process of

choosing pipeline depths and programming the shells can be performed automatically

after placement. This design methodology successfully avoids the reduction in clock

rate associated with long distance, inter-module communication. Nevertheless, the

7



Chapter 1. Introduction

addition of pipelining on feedback paths incurs a loss of throughput (data per clock

period) and hence, a loss of system performance. This loss manifests easily on module

interfaces that include feedback or hand-shaking, such as ready signals, and prevents

those interfaces from operating at full throughput. Thus, for communication styles

beyond simple, unidirectional wiring, LID may exacerbate rather than alleviate the

effect of long interconnect.

In principle, it is possible to pipeline a handshaking protocol across a long dis-

tance at full throughput by relaying it. Rather than connecting two modules directly,

a module may be connected to a protocol relay block that implements the same hand-

shaking protocol. The relay buffers and retransmits transactions to another relay or

to the target module. The first module may then go about its business, without wait-

ing for the round trip delay of handshaking directly with the target module. Modules

are thus decoupled in time, and each module is capable of transmitting or receiving at

full throughput. This technique is used in asynchronous half buffer insertion, SONICS

point-to-point links, as well as our own stream protocol. In contrast, LID relays raw

wires rather than protocols. It transforms a system at too low a level to know that a

protocol is being disturbed, so it cannot guarantee full throughput communication.

1.3.4 Bluespec

Bluespec [Bluespec, 2005] and its underlying term rewriting system [Arvind et al.,

2004] [Hoe and Arvind, 2004] provide a different approach to timing tolerant system

composition. Their basic abstraction is that of global state being updated by guarded,

atomic actions, termed rules. Rules may be local to a module or may relate the state of

several modules, inferring communication. Thus, communication and synchronization

between connected modules need not be specified as timed behaviors, like RTL, but

are derived automatically from rules. Concurrency comes from evaluating all rules

8
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and applying as many non-conflicting actions as possible in each clock period. Timing

tolerance comes from the allowance that an action may be deferred for several cycles,

including an action that infers communication. Synthesis automatically generates

all guard logic, interlock logic to prevent conflicting actions, and wiring between

modules. To promote modular design and module reuse in Bluespec, a module’s

state is hidden behind interface methods, and modules communicate by invoking each

others methods. In synthesis, those methods become guarded by the composition

of rules across connected modules. The performance of a system depends on the

combinational delay in the inferred composition of guards and actions, including

inter-module wiring.

Unfortunately, pipelining in Bluespec remains a completely manual effort. Pipelin-

ing a module requires explicitly specifying new state for pipeline registers and factor-

ing rules to use them. Likewise, decoupling inter-module connections in time requires

declaring interface registers, queues, or some other intermediate, stateful elements.

Specifying and exploring connection styles is substantially easier in Bluespec than in

RTL. However, Bluespec does little to address growing interconnect delay. In fact,

its reliance on analyzing global state is arguably obstructive to that end.

1.4 Stream Based Design

We seek a minimal set of abstractions beyond RTL to tackle some of the issues above

concerning large systems, long interconnect delay, and design reuse. Our fundamental

approach is to replace inter-module wires with streams, a particular form of buffered

channels. Streams abstract communication timing, making a system more robust to

delay, and supporting better modular design through timing-flexible interface specifi-

cations. Streams also abstract communication implementation, so they are amenable

to automatic generation of efficient handshaking, transport, and buffering. Streams

9
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represent dataflow between modules, not mere protocols, so they enable a compiler to

perform more system level analyses and optimizations. With language and tool sup-

port, a streaming system can be automatically retargeted to next generation process

technologies or programmable devices, thus enabling entire system reuse.

We briefly describe our streaming model here, chiefly in the context of technology

trends and design productivity. More complete specification of the model and its

language are provided in Chapter 2.

1.4.1 Streaming System Composition

Modules are connected by a stream communication mechanism. A stream is a point-

to-point, unidirectional, first-in-first-out (FIFO), buffered channel, which behaves as

an ordered queue. A stream decouples its producer and consumer in time, up to

the capacity of the stream queue. Flow control handshaking may be implemented

by a simple pair of producer-ready / consumer-ready signals. A stream is easy to

pipeline across long distances using protocol relaying or direct wire pipelining, yet

it is still capable of transmitting at full throughput (we demonstrate a pipelined

stream implementation in Chapter 3). In this sense, our approach provides a system

composition methodology similar to OCP [OCP, 2001].

1.4.2 Timing Independence

We impose an additional constraint on streaming to guarantee timing independent

system behavior. If an input desired by a module is not available, the module must

stall. Specifically, the module may not test for input readiness and decide to do

something else while waiting, since that may lead to timing-dependent behavior. The

resulting system is a process network with blocking read, a formalism which has been

proven to have deterministic behavior regardless of timing and scheduling [Kahn,

10
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1974]. Thus, system correctness is ensured regardless of placement distance, stream

pipelining, or stream implementation. Furthermore, system correctness is ensured

regardless of any modification to the timing behavior of individual modules. A mod-

ule may be pipelined or otherwise optimized, changing its timing behavior, without

affecting system correctness or requiring modification of other modules. Thus, we

support better modular design.

1.4.3 Language Integration

Requiring the module designer to conform to a stream protocol is laborious and

error prone. Instead, we provide language support and automation for streaming.

We turn the stream into an abstraction, expose it as an object in the syntax of a

hardware description language, and implement it through synthesis. A compiler can

then automatically generate handshaking signals and stall control for each module.

Automatic generation of communication saves labor and is correct by construction. It

also ensures conformance to the streaming discipline and the process network model.

Thus, it enables compiler analyses and optimizations that might not be practical or

permissible on an unrestricted RTL description.

1.4.4 Automatic Module Optimization

Since stream communication is robust to timing, a compiler is free to implement op-

timizations that change the timing behavior of a module. Such optimizations may

include pipelining, rescheduling, area-time transformations, or changes of granularity

(module decomposition/merging). We present a number of specific module opti-

mizations throughout this document. In Chapter 3, we discuss a simple, automatic

approach to module pipelining (applicable not only in our language but to any RTL

module that conforms to our stream protocol, since it is based on retiming registers

11
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from streams). In Chapter 5, we discuss automatically implementing non-critical

modules with serial arithmetic. In Chapter 6, we discuss automatically decomposing

a large module into a collection of smaller, stream connected modules.

1.4.5 Automatic System Optimization

The stream topology of a system exposes its communication dependencies, and thus

its available parallelism. A compiler can use this information to implement global

optimizations such as stream pipelining, stream queue sizing, area-time tradeoffs, and

throughput-aware placement. Such optimizations would not be possible in RTL based

design, where system level information is limited, and changes in timing behavior are

not tolerated. An RTL description binds a particular level of parallelism into its

timed description, and it does not provide enough information for a compiler to make

reliable, large scale changes. A streaming design has more information and more

freedom. We present a number of specific, system-level optimizations in Chapter 5.

1.4.6 Reuse and Retargetting

The timing independent nature of streaming, as defined above, naturally supports

better modular design and module reuse. Whereas an RTL module interface is spec-

ified in terms of timing behavior, a streaming module interface cares only about

relative order of tokens. Consequently, a streaming module works in more contexts.

A streaming module will continue to work on a next generation device that has dif-

ferent interconnect delay, where streams are pipelined deeper. More interestingly, a

streaming module will work even if the transport implementation is changed, be it

point-to-point wires, shared bus, or even shared memory. Modules may be optimized,

independently or in concert, to better match the different timing and resources of a

new device. Language integration can help automate the retargeting process by ap-
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plying system level optimizations and regenerating both modules and streams. Thus,

a streaming discipline with language integration supports entire system reuse, not

just module reuse.

1.4.7 Platform Support

It is possible to provide specialized resources for streaming on a programmable plat-

form. A streaming platform might provide a network on chip (NOC) for stream

transport, custom stream queues, specialized programmable logic for stream hand-

shaking, and streaming memory controllers. Any of these resources may be improved

in a next-generation device, provided their stream interface is retained. Addition-

ally, streaming modules may be implemented in specialized computational resources,

such as MACs (multiply-accumulate), FFTs (fast Fourier transform), or micropro-

cessor cores, provided they are equipped with streaming interfaces. Chip I/O may

be incorporated in special, streaming nodes, which translate from the on-chip stream

protocol to standard, off-chip protocols. Thus, a stream discipline can be the founda-

tion for a complete system on a chip (SOC) or a programmable platform, including

heterogeneous components and off-chip communication. We dedicate Chapter 6 to a

discussion of streaming programmable platforms and techniques for compiling to use

their structured resources.

1.4.8 Extension: Area Abstraction

With proper architectural support, streaming is a key enabler for area abstraction,

which further supports design reuse and retargeting. We envision a hardware virtu-

alization scheme, as in SCORE (Stream Computations Organized for Reconfigurable

Execution) [Caspi et al., 2000a] [Markovskiy et al., 2002], whereby an arbitrarily large

computation graph is partitioned and mapped onto a small, reconfigurable device as a
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sequence of configurations. Buffered streams are used to decouple connected modules

that are not loaded in the same configuration. If inter-configuration stream buffers

are large, then each configuration can run for a long time. The resulting reduction

in reconfiguration frequency allows a system to tolerate and amortize long reconfig-

uration delays, which are typically thousands of cycles. In contrast, non-streaming

virtual platforms such as WASMII [Ling and Amano, 1993] and TMFPGA [Trim-

berger et al., 1997] must reconfigure at every cycle, or at best every few cycles, which

requires larger, specialized reconfiguration hardware and more power.

The reconfigurable fabric on a SCORE device is partitioned into fixed size slices,

termed compute pages, communicating through a streaming network on chip. The

use of compute pages facilitates scheduling and placement by providing translatable,

medium granularity, units of virtualization—much like virtual memory pages. A

major challenge in compiling to SCORE is partitioning the original, stream connected

modules into stream connected pages, while minimizing performance overhead and

area fragmentation. We discuss techniques for page partitioning in Chapter 6.

1.4.9 Unbounded Stream Buffering

Our streaming model, based on process networks, allows producers and consumers

to decide dynamically when to read and write to streams. This approach enables

a natural description of applications having dynamic communication rates or I/O

sizes, such as compression/decompression. We promote the notion that intermediate

data should be encoded and buffered in streams where ever possible (as opposed

to being explicitly stored in shared memory or ad hoc structures—even if they are

accessed through streams). This approach makes inter-module dependencies visible

to the compiler, enabling more system level analysis and optimization. The actual

implementation of stream buffers may be chosen by a compiler to match the resources
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of the target device. A small stream buffer might be implemented in registers, whereas

a large stream buffer might be implemented in memory.

Supporting dynamic rate stream access has the unfortunate consequence that

programs may be specified which require unbounded buffering to function correctly.

For example, a module may ignore one of its inputs for a long time, causing tokens

to build up arbitrarily deep in the stream buffer. In a practical implementation with

finite buffering, such programs may deadlock. This problem is not unfamiliar to

RTL system designers, who in building systems with dynamic communication, must

manually specify buffer implementations and sizes. In most real-world applications,

dynamic buffering requirements are limited by compression formats, communication

protocols, or some other constraint. Consequently, a designer can usually determine

static buffer bounds by inspection or simulation.

If buffering is restricted to be in streams, then we can provide some automation

for determining buffer sizes. In Chapter 5, we propose an analysis for determining

minimum, deadlock-free sizes for stream buffers. If the analysis fails, a compiler

can inform the designer and ask for explicit sizes on particular buffers. If buffer-

related deadlock is still a concern, the implementation may detect it at runtime. A

dynamically reconfigurable streaming platform such as SCORE [Caspi et al., 2000a]

[Markovskiy et al., 2002] can dynamically reallocate buffers at run-time in the hopes

of making additional progress after a deadlock.

1.5 Related Streaming Models and Architectures

The stream based design methodology proposed above is most effective for application

domains that lend themselves naturally to stream decomposition. These so-called

streaming applications are plentiful in the world of digital signal processing, media

processing (audio/video), and communication. Streaming applications are typified
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by:

• large, sequentially accessed data structures (data streams),

• a (mostly) persistent computation structure,

• limited and infrequent reconfiguration or mode changes, and

• limited dataflow feedback.

Such applications can often be decomposed into a series of transformations on streams,

which suggests efficient implementation in hardware as a pipeline of independent

modules. Feedback is typically limited to be within modules, or infrequent between

modules, so that concurrency exists to evaluate many modules simultaneously. The

reliance on mostly sequential data access patterns means that implementations need

not be bottlenecked by large, random access memories.

A large variety of models, languages, and architectures exist to support streaming

applications. We review some of them here. Additional discussion of related models

is presented in Chapter 2, with a more theoretical perspective.

1.5.1 Statically Schedulable Dataflow

A number of existing languages and synthesis engines are based on restricted but

statically schedulable streaming models, such as synchronous dataflow (SDF) [Lee

and Messerschmitt, 1987b] [Bhattacharyya et al., 1996] and cyclo-static dataflow

(CSDF) [Bilsen et al., 1996]. Examples include SDF to VHDL synthesis in Ptolemy

[Williamson, 1998], synthesis of synchronous circuits from Simulink [Simulink, 2005],

and StreamIt for RAW [Gordon et al., 2002a]. In these models, individual processes

or modules repeat a firing step, or a loop of firing steps in CSDF, with each firing

restricted to consume and produce a static number of tokens. The upside is that

program behavior becomes fully analyzable, so that resources and schedules can be

set at compile time, and simple transforms can parallelize the program to the target
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hardware (e.g. horizontal and vertical graph restructuring in StreamIt). The down-

side is that such programs cannot represent dynamics, so they are inherently incom-

plete. Dynamic communication rates can only be represented by building protocols

out of streams (e.g. coupling a data stream with a presence stream), and statically

sized buffers may need to be allocated as special nodes. Such manual structures are

cumbersome, inefficient in implementation, difficult to analyze, and obstructive to

retargeting. Alternatively, coarse grained dynamics can be added by using a meta-

language to sequence a collection of statically schedulable kernels. However, the

dataflow between kernels may be obfuscated in the meta-language, and system level

analysis again becomes difficult or impossible. For these reasons, our streaming so-

lution is based on a dynamic dataflow model, whose stylized dynamics are amenable

to compiler analysis.

1.5.2 Dynamic Dataflow

A number of models and languages exist that support dynamic flow rates on streams.

Boolean controlled dataflow (BDF) [Buck, 1993], integer controlled dataflow (IDF)

[Buck, 1994], and dataflow process networks (DFPN) [Lee and Parks, 1995] are dy-

namic rate, process network models using functional, i.e. stateless processes. In these

models, state exists only in stream contents. This modeling style is well suited for

signal processing applications, where signal flow graphs are commonplace. However,

it is largely foreign to hardware designers, who are used to the expressive power of

finite state machines (FSMs) and data registers. Process state may be represented

as feedback streams on functional processes, but this only obfuscates state from de-

signers and synthesis tools. It is better to treat process state differently than data

streams, since state never requires queueing, and it may be optimized by a large body

of existing work in sequential synthesis (e.g. SIS [Sentovich et al., 1992]). We are not
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aware of any efforts to map these stateless process models directly to hardware.

CAL [Eker and Janneck, 2003] and YAPI [de Kock et al., 2000] [Stefanov et

al., 2004] are extended process network models that support process state. Our

own model closely resembles CAL, with both models defining process behavior as

actions guarded by process state and input presence. Both CAL and YAPI permit

non-deterministic behavior which may depend on the arrival time of stream inputs.

CAL does so by permitting a specification of priorities among actions, to resolve the

case when multiple actions are simultaneously enabled. YAPI does so using a probe

construct, which allows testing and reacting to the absence of inputs. In contrast, our

model retains determinism by disallowing input testing and by constraining multiple

enabled actions (as detailed in Chapter 2). These restriction ensure that behavior is

faithfully retained across device generations and different implementations of stream

interconnect.

The main challenge with dynamic dataflow models is that stream buffer require-

ments may be unbounded, and knowing whether they are unbounded is undecidable.

Thus, it may be impossible for a compiler to allocate sufficient buffering resources

at compile time without creating a possibility of run-time deadlock. Processor based

implementations of dynamic dataflow can overcome this limitation by reallocating

buffers at run-time, but hardware implementations generally cannot. Certain re-

stricted forms of dynamic dataflow are guaranteed to need only bounded buffering,

including well behaved dataflow graphs [Gao et al., 1992], BDF graphs with bounded

length schedules [Buck, 1993], and CHP in static token form [Teifel and Manohar,

2004]. Our streaming approach avoids such restrictions to improve expressiveness, so

it may require unbounded buffering. To bound buffers for a hardware implementa-

tion, we propose in Chapter 5 a compile-time analysis of buffer bounds based on state

space enumeration. If the analysis fails to bound buffers, then we rely on a designer

to bound them explicitly.
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1.5.3 Simulink

A number of efforts have appeared for compiling from Simulink [Simulink, 2005], a

graphical design and simulation environment, to hardware, particularly to FPGAs.

Examples include Synplify DSP from Synplicity [Synplicity, 2005a], System Generator

from Xilinx [Xilinx, 2005a], DSP Builder from Altera [Altera, 2005], and the BEE

design environment [BWRC, 2005]. A program in Simulink is a hierarchical graph

of computational nodes, where nodes process in continuous time (e.g. integrals) or

discrete time (e.g. FIR filters). A library of node generators is usually provided, which

generates efficient hardware implementations of non-trivial tasks such as filters or

FFTs. System composition is structural and timed, so that signal connections become

wires, and ideal delays become registers. This structural interpretation is unfortunate,

since the subset of allowed, synthesizable behaviors is usually equivalent to SDF, a

highly optimizable model (or more generally, equivalent to a collection of SDF regions

with unrelated clocks, which may be optimized separately). In principle, it should be

possible to apply system level optimizations such as pipelining or parallelizing by node

replication. Even so, those synthesizable behaviors suffer from the same inability to

express dynamics as SDF, which makes them limited for specifying complete systems.

1.5.4 Imperative Languages

A number of efforts have appeared for synthesizing streaming applications to hardware

from imperative languages such as C (without pointers) or Java. Synthesis from a

single thread of control faces a difficult challenge of extracting parallelism. Most

single-thread approaches are limited to exploiting data parallelism by unrolling and

mapping loops, so their performance is limited (e.g. Garp C compiler [Callahan and

Wawrzynek, 2000], DEFACTO [Diniz et al., 2001], Xax [Snider, 2002]). Compaan

[Turjan et al., 2005] is unique in its ability to decompose Matlab code into a network of
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multiple, stream connected processes, so it can exploit a higher degree of concurrency.

Other efforts at synthesizing imperative languages make task level concurrency

explicit, accepting a specification of multiple communicating threads. The most ba-

sic usage model merely uses the host language syntax and libraries to specify RTL

behavior (e.g. SystemC 1.0 [OSCI, 2000], Handel-C from Celoxica [Handel-C, 2005]).

More abstract approaches use the untimed semantics of communicating sequential

processes (CSP) [Hoare, 1985], where inter-process connections are two-party ren-

dezvous (e.g. Streams-C [Gokhale et al., 2000], Sea Cucumber [Jackson et al., 2003]).

Typically, rendezvous is treated as a primitive from which more sophisticated mech-

anisms are built, such as queues or signals. Other approaches provide multiple com-

munication abstractions, such as queues, stacks, and shared memory, and can auto-

matically generate communication implementations (e.g. System C 2.1 [OSCI, 2005],

Catapult C from Mentor Graphics [Catapult C, 2005]). These approaches provide

useful automation for module design, but in a sense, they provide too much freedom

at the system level. The availability of multiple mechanisms for communication is

intended to promote efficient implementations, but that is a moniker for manual de-

sign choices. The resulting lack of a unifying design discipline or semantic model

makes system level analyses difficult, and it ultimately obstructs retargeting, reuse,

and scaling on next generation devices. Even when a design discipline is enforced,

the semantic model is usually non-deterministic and hard to analyze.

In contrast, we propose synthesizing a more disciplined, minimalist model of

streaming. By restricting the definition of streams, we enforce a strong semantic

model (process networks) with well understood properties. This streaming discipline

may be embedded in many possible languages, including the ones discussed above.

For example, one may restrict Streams-C to use buffered streams without signals,

or SystemC 2.0 to use only FIFO queues without a capacity test (thus enforcing

blocking read). Programs thus restricted would become amenable to stream specific
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optimizations. Our particular choice of a process network interpretation of streaming

is motivated by multiple factors, including its ability to deal with interconnect delay,

and its facility in handling both static rate (e.g. signal processing) and dynamic rate

(e.g. compression) problems. We revisit semantic models and our particular choices

in Chapter 2.

1.5.5 Streaming Architectures

A variety of architectures exist for efficient implementation of streaming multimedia

applications. Examples include Cheops [Bove, Jr. and Watlington, 1995], Philips

video signal processor (VSP) [de Kock, 1999], Pleiades [Wan et al., 2001], Imagine

[Khailany et al., 2001], TRIPs [Sankaralingam et al., 2003], and Cell [Kahle et al.,

2005]. These architectures get their performance from several key features: (1) archi-

tectural support for data streams, including efficient, sequential memory access and

high throughput transfer between modules; (2) concurrent evaluation of multiple pro-

cesses (though not necessarily full concurrency—some processes may be time-shared

in a multi-context module such as a microprocessor); and (3) domain specific features

in the modules, such as MACs (multiply-accumulate) for signal processing. Efficient

sequential transfers and multi-processing are orthogonal to domain specificity, and

they are present in many general purpose concurrent architectures. It has been shown

that streaming can be an efficient way to use multi-processor and concurrent archi-

tectures, including Monsoon [Shaw et al., 1996], MIT RAW [Gordon et al., 2002b]

[Gordon et al., 2002a], and Garp [Callahan et al., 2000].

Unfortunately, the programming models for such architectures are often ad hoc,

built from an arbitrary collection of communication and concurrency mechanisms

such as message passing, and lacking a unifying semantic model2. This is the same

2Philips VSP [de Kock, 1999] is a refreshing example of a streaming processor whose programming
model is based on a well founded, formal model of streaming, namely CSDF.
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problem cited above for synthesis from C—too much freedom in the programming

model. In such cases, compiler optimizations are limited to traditional, local opti-

mizations within modules, while system optimization and correctness are left to the

programmer. In some cases, strong semantic models exist for individual contexts of

a subsystem but not for the control thread that sequences contextst in the subsys-

tem. Once a program is manually partitioned and scheduled as a set of contexts, its

dataflow is obscured from tools. Here again, the lack of a unifying model for total

system behavior obstructs retargeting, reuse, and scaling on a next generation variant

of the architecture. To address these shortcomings, we propose in Chapter 6 a set

of programmable, reconfigurable architectures built expressly around our streaming

discipline as a unified programming model.

1.6 Contribution and Organization

Our key contributions in this research work are as follows:

1. We present a streaming model for hardware design that, by abstracting commu-

nication timing, promotes better modular design, module reuse, and graceful

handling of long interconnect delays. We provide both operational and denota-

tional semantics (Chapter 2).

2. We present a concrete language TDF based on the streaming model, resembling

a hardware description language with built-in streams (Chapter 2).

3. We implement a complete synthesis methodology for mapping TDF to a com-

mercial FPGA, including automatic generation of streams and stream hand-

shaking, as well as automatic pipelining of modules and stream interconnect

(Chapter 3). We generate Verilog (RTL) as an intermediate form and rely on a
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commercial back-end to map it to the FPGA. In this way, we exploit existing,

state-of-the-art RTL tools.

4. We characterize the area and performance impact of stream support on an

FPGA, using the automatic synthesis methodology and seven multimedia ap-

plications written in TDF (Chapter 4).

5. We propose several automatic, system-level analyses and optimizations for stream-

ing systems, including automatic selection of stream buffer sizes; selection of

stream pipelining depths; stream aware, throughput-optimized placement; and

serialization of non-critical modules for area reduction (Chapter 5).

6. We propose several streaming programmable platforms that support our stream-

ing model more efficiently than an FPGA, and that enable better system reuse

and scaling. We extend our synthesis methodology to target these platforms,

including partitioning for paged platforms such as SCORE (Chapter 6).

We believe that the streaming methodology proposed herein, or something resem-

bling it, is necessary as a next generation of design abstraction for digital systems.

Our methodology addresses a number of shortcomings of the prevalent design abstrac-

tions, which are based on RTL and system composition through standard interfaces.

Our methodology can be viewed as a layer of abstraction on top of RTL, mapping to

it and benefiting from its existing body of compilation techniques and software.
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Language and Theoretical Foundation

This chapter presents the details of our model and language for streaming computa-

tion. The term “streaming” has many meanings in the literature, each having different

expressive power, implied run-time support, and consequences for compilation tools.

Our specific model and language are motivated by an intent to implement compu-

tations as digital circuits and by the associated technology trends such as growing

interconnect delay. These considerations lead us to choose hardware-centric defini-

tions for streams, modules, and system composition.

We begin this chapter with an overview of existing streaming models and their

respective design considerations (Section 2.1). We then present a new model for

hardware-centric streaming, TDF Process Networks (TDFPN), and give its opera-

tional semantics (Section 2.2). We present TDF (Task Description Format), a lan-

guage for streaming applications based on TDFPN (Section 2.3). Finally, we present

denotational semantics for TDFPN, which formally capture the meaning of a complete

system composition (Section 2.4).

The model and language described herein were originally developed for SCORE

(Stream Computations Organized for Reconfigurable Execution), targeting a dynami-
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cally reconfigurable architecture [Caspi et al., 2000a]. We distinguish our model from

SCORE, since we consider only single context execution (“fully spatial” execution in

SCORE terms). Thus the operational semantics of TDF process networks are a sub-

set of those of SCORE. We describe SCORE as a logical extension of TDF process

networks in Chapter 6 on streaming platforms. The TDF language and its use in

SCORE are fully detailed in [Caspi, 2005].

2.1 Streaming Models

Streaming and dataflow based design environments abound today. A short and highly

incomplete list of examples might include graphical design environments such as

Simulink [Simulink, 2005], Ptolemy [Ptolemy, 2005], SPW [SPW, 2005], System Stu-

dio [Synopsis, 2005] (formerly COSSAP), and LabVIEW [LabVIEW, 2005], as well

as text based languages such as Streams-C [Gokhale et al., 2000], StreamIt [Gordon

et al., 2002a], Silage [Hilfinger, 1985], Sisal [McGraw et al., 1985], Lucid [Ashcroft et

al., 1995], and Haskell [Jones, 2003]. Additional examples may be found in [John-

ston et al., 2004] and [Najjar et al., 1999]. The use of visual or textual syntax is

largely irrelevant to a program’s meaning, so we shall refer to both forms as lan-

guages. All these languages share a superficial similarity in defining an application

as a composition of stream-connected components. Components are also termed ac-

tors, processes, nodes, or operators. Stream connections expose the communication

dependencies between components, and thus their available concurrency, enabling

tools to produce efficient system implementations. However, these approaches offer

wildly different definitions of streams, stream access methods, component structure,

notion of time, etc. Consequently, they differ in expressive power, determinism of

application behavior, amenability to compiler analysis, and runtime resource require-

ments. We take the pragmatic approach that a programming model should provide
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appropriate abstractions for the underlying implementation. In this research work, we

are concerned with the implementation of computation as digital circuits in Silicon,

where interconnect delay is increasing with each device generation. Consequently,

we seek a streaming model that can abstract communication timing while retaining

deterministic behavior.

2.1.1 Definitions of the Stream

Streaming languages differ, first and foremost, in their definition of the stream. That

definition binds the meaning of system composition and, in turn, important system

properties such as determinism and analyzability of deadlock. The general notion of a

stream as a connection is insufficient, because it fails to specify important properties

of the connection such as:

• Is it directional?

• Does it permit single or multiple writers?

• Does it permit single or multiple readers?

• Does it represent data values in time?

• Does it represent data values in order? (e.g. a FIFO queue does, a Petri net

place [Murata, 1989] does not)

• Does it allow data values to be replicated or over over-written in transit?

(e.g. a PGM graph variable [Kaplan and Stevens, 1995] allows replication and

over-writing, like a register; a Streams-C signal [Gokhale, 2003] allows over-

writing but not replication; a Kahn process network channel [Kahn, 1974]

allows neither)

Lee and Sangiovanni-Vincentelli [Lee and Sangiovanni-Vincentelli, 1998] catego-

rize many streaming languages into models of computation based on the language’s

definition of streams, or in their terms, of signals. Their models of computation in-
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clude continuous time, where a signal is a function from time to value; discrete event,

where a signal is set of (time, value) pairs; synchronous reactive, where a signal is a

set of (quantized time, value) pairs; and process network, where a signal is an ordered

sequence of values (i.e. a queue of tokens). These definitions of signals lead to a fam-

ily of denotational semantics for proving properties about streaming models. We will

use their categorizations for discussion here and their denotational framework later.

2.1.2 Notion of Time

Most of Lee and Sangiovanni-Vincentelli’s models include an explicit notion of time,

implying synchrony among all components. The synchrony is logical, and need not be

absolute in the implementation. Nevertheless, its existence in the model would con-

strain any rescheduling in a parallel hardware implementation, where actors evaluate

concurrently. Synchrony may become obstructive in the presence of long interconnect

delay, where waiting for round trip delays would reduce performance.

The process network model is attractive for our purposes, because it abstracts

away time and allows asynchrony among actors. Asynchrony is useful for dealing

with long interconnect delay, so a stream consumer may be scheduled to run arbitrar-

ily later than the stream producer. Process networks also tolerate unpredictability or

changes in the timing and implementation of streams and actors. This timing inde-

pendence is useful for porting designs to next generation devices, where the timing

of actors and streams may be different. Another useful feature of process networks

is that the queue definition of streams naturally accommodates computations where

the amount of data transmitted between actors may vary dynamically, e.g. compres-

sion/decompression.
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2.1.3 Stream Testing

A process network model, using queues for streams, may or may not allow testing

stream readiness. Extended process network models such as YAPI [de Kock et al.,

2000] permit an actor to test whether an input stream has data available and to

take action accordingly. This approach is useful for real-time reactive systems that

deal with an unreliable environment, e.g. skipping a video frame when samples are

lost. However, the resulting timing dependent behavior is non-deterministic and usu-

ally difficult to debug. Traditional process network models such as Kahn process

networks (KPN) [Kahn, 1974] disallow testing stream readiness. The resulting se-

mantics, termed blocking read, require that, once an actor issues a stream read, it will

block until the requested data is available. Kahn proved that this simple restriction

is sufficient to guarantee deterministic behavior regardless of timing or scheduling

(assuming there is no randomness within individual processes).

2.1.4 Dynamic Consumption / Production Rates

Streaming languages may differ in the allowed rate of stream access. Kahn pro-

cesses may choose to consume or produce data at any time, even based on dynamic,

data-dependent decisions. For example, a process may choose to ignore certain input

streams, causing tokens to build up arbitrarily deep in those streams. Consequently,

Kahn process networks may require unbounded buffering for streams and may dead-

lock if implemented with buffers that are too small. Whether or not a particular

network will deadlock is undecidable. This follows from the Turing completeness of

KPN (one may build a Turing Machine in KPN using streams to implement tapes

[Buck, 1993]). Deciding whether a Turing complete network will deadlock is equiva-

lent to deciding whether it will halt, which is known to be intractable. Thus, correct

execution of KPN in general requires dynamic scheduling and memory allocation.
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Parks [Parks, 1995] proposes the approach of reallocating full buffers to be larger

whenever a buffer related deadlock occurs. Clearly, this is impractical in a hardware

implementation.

Alternatively, process networks may be restricted to avoid dynamic consump-

tion/production rates and thus regain the decidability of memory bounds and of

deadlock avoidance. In Synchronous dataflow (SDF) [Lee and Messerschmitt, 1987b],

each actor is restricted to consume and produce tokens in fixed ratios, a policy en-

forced by associating an actor’s consumption and production with an atomic firing

step. In Cyclo-static dataflow, each actor is restricted to consume and produce to-

kens in a repeating pattern of fixed ratio firings. The static nature of these models

permits static analyses for liveness (deadlock avoidance), memory bounds, and fir-

ing schedule. Statically schedulable models enable highly optimized mappings to

arbitrary hardware, including microprocessors [Bhattacharyya et al., 1996], digital

circuits [Williamson, 1998], and multi-processor arrays [Gordon et al., 2002a].

Interestingly, statically schedulable models may be extended into Turing Com-

plete or non-deterministic models by the mere addition of certain canonical actors.

Boolean controlled dataflow (BDF) [Buck, 1993] extends SDF with switch and select

token routers, which are powerful enough to implement if-then-else decision making.

Similarly, extending SDF with a non-deterministic merge yields a non-deterministic,

undecidable model [Lee and Neuendorffer, 2005].

2.1.5 Actor Elaboration

Stream languages may allow actors to elaborate themselves into streaming subgraphs

containing other actors. This elaboration is a streaming analogue of a function call,

where one actor temporarily invokes another, or invokes a group of others. Static

elaboration is available in most languages and corresponds simply to a hierarchy
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in the stream connection graph. More interesting is dynamic elaboration, which is

supported in the Kahn-MacQueen language using coroutines [Kahn and MacQueen,

1977]. Dynamic elaboration is a highly expressive mechanism, but it may make a

model hard to analyze or entirely undecidable. A restricted form of dynamic elabora-

tion is available in Heterochronous dataflow (HDF) [Girault et al., 1999], which is a

statically schedulable model. Each HDF actor elaborates into a finite state machine;

each state elaborates into an HDF subgraph; and so on in alternating, finite recur-

sion. Each HDF state corresponds to a fixed consumption/production ratio, which

is respected by the graph elaborated from that state. Although different states may

have different ratios, the total state space is countably finite, so it corresponds to a

finite number of fully-elaborated synchronous dataflow graphs.

Dynamic elaboration is not practical in a single context hardware implementa-

tion, such as an FPGA. Elaboration based on finite recursion (e.g. HDF) may be

statically unrolled into hardware, but the resulting implementation will have many

idle components. Efficient dynamic elaboration requires a time shared implementa-

tion, e.g. using microprocessors or dynamic reconfiguration.

2.2 TDF Process Networks

We now develop a particular streaming model suitable for implementing applications

as digital circuits. In this section, we define the model and outline its operational

semantics. In later sections, we will describe a language instance of the model and

its denotational semantics.
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2.2.1 Key Features

Determinism is a cornerstone for our model. A model is determinate or deterministic

if its behavior is determined entirely by its inputs. From a technology standpoint, we

desire determinism regardless of timing, so that an application will be robust to new

timing characteristics when ported to a next generation device. Changes that may be

appropriate when retargeting to a new device include replacing the stream transport

with a new on-chip network; pipelining actors; implementing time-space trade-offs

to match architectural throughput bottlenecks; and restructuring actors to match an

architecturally favorable granularity. Without determinism, these changes are likely

to modify system behavior and introduce bugs. With a deterministic model, a com-

piler is free to automatically implement any of those changes without affecting system

behavior. Determinism also guarantees equivalence between hardware behavior and

simulated behavior, regardless of timing and scheduling in the simulator. Thus, it

enables debugging to be done in highly efficient, functional simulators.

We define the stream to be a FIFO queue as in process networks, i.e. a unidirec-

tional, single producer, single consumer, first-in-first-out, buffered channel. Such a

stream is an untimed abstraction of an inter-module wire, carrying a sequence of to-

kens from producer to consumer. We define stream access to use blocking read, so as

to guarantee determinism regardless of the implementation and timing of streams and

actors. An application’s actors may be instantiated in hardware to run concurrently

and persistently, driven by availability of input data and output space.

We wish for actors to support dynamic consumption/production rates, to natu-

rally support compression/decompression operations. As a consequence, our model

must incorporate stream buffering and allow for unbounded buffer sizes. A practi-

cal hardware implementation has only finite buffering resources and cannot support

dynamic reallocation of buffers. Thus, we choose static buffer sizes for the imple-
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mentation, and we accept that some programs with unbounded buffer requirements

may fail. In practice, most applications have bounded requirements, even if those

requirements appear to be data dependent. We will rely on compiler analysis and

programmer annotation to choose static buffer sizes.

Actors should be defined in a manner familiar to hardware designers. Thus, we

structure actor definitions around finite state machines (FSMs). In principle, it is

possible to use functional actor definitions and add state in the form of feedback loops.

However, this approach is less convenient for hardware design, and it will likely yield a

poorer implementation than an FSM-based design optimized by sequential synthesis.

A conventional FSM is a synchronous circuit, which evaluates inputs and sets outputs

on every cycle of a clock signal. We extend that notion into a streaming finite state

machine (SFSM), which fires only when input tokens and output space are available.

Each state may specify which inputs and outputs are desired, comprising a state-

specific firing guard. While the guard is unsatisfied, the actor blocks, i.e. stalls in the

same state. When the guard is satisfied, the actor fires, i.e. consumes input tokens,

evaluates a state-specific action, and produces output tokens.

2.2.2 SFSM Definition

We begin with a simplified definition of an SFSM, presented in analogy to an FSM,

and extend the definition in Sections 2.2.3 and 2.2.4. An additional restriction is

discussed in Section 2.4.4.

A conventional FSM (Mealy type) may be defined as:

FSM = (Σ, σ0, σ, I, O, fNS, fO) (2.1)

where:
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• Σ is a set of states,

• σ0 is the start state,

• σ is the present state,

• I is the space of input values (an M -tuple of bits),

• O is the space of output values (an N -tuple of bits),

• fNS : Σ× I → Σ is the next state function, and

• fO : Σ× I → O is the output function.

At each clock cycle, the FSM samples inputs i ∈ I, emits outputs o = fO(σ, i), and

transitions to a next state σ′ = fNS(σ, i). A system is a composition of FSMs via

wire connections, and all FSMs step synchronously.

To extend the above model into an SFSM, we replace I and O with tuples of

sequences, rather than tuples of values. A firing guard will look ahead into the input

sequences to determine whether desired inputs are available. The output function

will produce output sequences.

We use a notation for sequences based on [Lee and Parks, 1995] and [Lee, 1997].

A sequence s ∈ S with S = T ω is a possibly infinite, ordered list of values (tokens)

of type T (ω being the first infinite ordinal). A specific sequence s ∈ S is denoted by

a bracketed list of values s = [v1, v2, ...], with vi ∈ T . Let s.s′ denote a concatenation

of sequences s, s′. Let s v s′ denote that s is a prefix of s′ (i.e. s′ = s.s′′). For

tuples of sequences, using boldface, let sss ∈ SM denote an M -tuple, let sss.s′s′s′ denote a

pointwise concatenation, and let sss v s′s′s′ denote a pointwise prefix. For simplicity, we

will assume that all inputs and outputs of an SFSM carry values of the same type S.

An SFSM may be operationally defined as:

SFSM = (Σ, σ0, σ, I, O, R, fNS, fO) (2.2)

where:
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• Σ is a set of states,

• σ0 is the start state,

• σ is the present state,

• I ⊆ SM is the space of input sequences (an M-tuple of sequences),

• O ⊆ SN is the space of output sequences (an N-tuple of sequences),

• R : Σ→ I is a collection of firing rules, which specify for each state a tuple of

desired input sequences,

• fNS : Σ× I → Σ is the next state function, and

• fO : Σ× I → O is the output function, producing output sequences.

An SFSM evaluates arbitrarily often. At a given evaluation, an SFSM’s input queues

contain subsequences iii ∈ I, and its output queues contain subsequences ooo ∈ O.

The SFSM fires if and only if: (1) the present state’s desired inputs are avail-

able, i.e. R(σ) v iii, or equivalently iii = i′i′i′.R(σ), and (2) the present state’s outputs

fO(σ, R(σ)) would fit in the output queues without overflow (in the abstract model

with infinite buffering, test (2) would always be true). Upon firing, the state of the

SFSM and queues are updated such that σ′ = fNS(σ, R(σ)), o′o′o′ = ooo.fO(σ, R(σ)), and i′i′i′

is defined by iii = i′i′i′.R(σ). Otherwise, the SFSMs and queues retain their present state.

A system is a composition of SFSMs and queues having a collective state including

queue contents. A system behavior is an arbitrary interleaving of SFSM firings.

In a practical implementation, an SFSM and a queue may be able to exchange

at most one token per firing. In such a case, every component sequence in R and

fNS would be empty or unit length, of the form [v]. Nevertheless, it is possible to ac-

commodate longer input and output sequences in several ways, including (1) directly,

using queues with windowed read/write, (2) by widening a stream into several paral-

lel streams, or (3) by transforming multi-token states into sequences of single-token

states.
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2.2.3 Extending the Blocking Read

The SFSM model described above uses a multi-stream blocking read. In each state,

the SFSM issues a blocking read simultaneously to every stream specified in R(σ).

This is a simple generalization of the Kahn-MacQueen blocking read [Kahn and Mac-

Queen, 1977], which reads and blocks on a single stream at a time. Still, it suffers

from the same non-compositionality as the Kahn-MacQueen model. A composition of

two processes may not be expressible as a single process, since a single process cannot

decouple the reads of the original processes. Consider, for example, the parallel com-

position of two identity processes, each of which copies input to output one token at

a time. A process representing their composition could issue a blocking read to either

of the original input streams, or to both inputs at once, but either approach couples

the execution of the two processes. The single process cannot simulate, using block-

ing read, the original behavior of independently evaluating two processes. Likewise,

the Kahn-MacQueen blocking read prevents expressing certain transformations on

an SFSM, including certain decompositions into communicating sub-machines, and

pipelining.

To regain compositionality, we extend the blocking read with multiple firing rules.

Each state will be guarded to match one or more allowable input patterns. Each such

pattern, or firing rule, may be associated with a different behavior. Thus, the above

composition of two identities may issue a read that succeeds on the presence of the

first input or second input, then emit a token to the first or second output accordingly.

The SFSM model in equation (2.2) must be modified such that:

• R ⊆ Σ × I is a set of firing rules, which specify for each state one or more

tuples of desired input sequences.

The SFSM operational semantics are modified such that the SFSM fires in state σ if

any of that state’s firing rules are satisfied, i.e. if ∃rrr ∈ R s.t. rrr = (σ,ρρρ) and ρρρ v iii.
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Unfortunately, multiple firing rules open the door to non-deterministic behavior.

A process may now be sensitized to the order of arrival of its inputs, choosing a

different next state depending on that order. To retain determinism, we need a

strategic restriction on the structure of firing rules, output functions, and next-state

functions. We defer a complete discussion of such a restriction to Section 2.4.4, where

we develop denotational semantics to capture the meaning of a computation. Part

of the solution comes from the fact that a process is not really sensitized to the

order of arrival, but rather to the order of consumption. If both inputs are available,

the SFSM must choose which one to consume, and that choice is an arbitrary part

of the blocking read implementation. While this may seem like a source of hidden

non-determinism, it in fact prevents a programmer from writing one form of timing

dependent behavior. In contrast, CAL [Eker and Janneck, 2003] allows multiple firing

rules to be explicitly prioritized by the programmer, representing intentional timing

dependence.

2.2.4 Restricted Value Matching

The definition R ⊆ Σ × I implies that a firing rule may match against a particular

value of input, not just the presence of input. Value matching, or pattern matching,

is possible in dataflow process networks (DFPN) [Lee and Parks, 1995], which are

defined similarly, and in functional languages with streams such as Haskell and SML.

However, our implementation of TDFPN permits only restricted value matching.

The data type for each stream is extended with an end-of-stream value eos, and a

firing rule may match against only two classes of values: eos or non-eos. We can

redefine R as follows. For a given stream data type T , where S = T ω and I = SM ,

let T ∗ = {∗, eos}, let S∗ = (T ∗)ω, and let I∗ = (S∗)M . The symbol “∗” shall

mean any non-eos value, and a rule matching “∗” shall be shorthand for a collection
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of rules matching each non-eos value in the position of “∗”. The SFSM model in

equation (2.2) must be modified such that:

• R ⊆ Σ × I∗ is a set of firing rules, which specify for each state one or more

tuples of desired input sequences.

Disallowing value matching simplifies firing guards in a circuit implementation. A

guard that checks for values involves comparators, whereas a guard that checks only

for presence involves testing one bit. In our synthesis methodology (Chapter 3), eos

is encoded as an extra data bit, so matching eos involves testing only one bit. Disal-

lowing value matching forces certain actors to be expressed differently. Specifically, it

may require stateless actors to be re-expressed with state. For example, consider the

canonical select(s,t,f) actor from BDF [Buck, 1993], which selectively passes a token

from either input t or f to the output, depending on the value of the boolean control

token from input s. select with value matching is stateless:

rstrstrst = (σ0, [T], [∗],⊥), fO(σ0, [T], [vt],⊥) = [vt], fNS(σ0, [T], [vt],⊥) = σ0

rsfrsfrsf = (σ0, [F],⊥, [∗]), fO(σ0, [F],⊥, [vf ]) = [vf ], fNS(σ0, [F],⊥, [vf ]) = σ0

In contrast, select without value matching requires state. Input s is matched only for

presence, and its value is used to branch to a state that reads t or to another state

that reads f :

rsrsrs = (σs, [∗],⊥,⊥), fO(σs, [vs],⊥,⊥) = [⊥], fNS(σs, [vs],⊥,⊥) = vs?σt : σf

rtrtrt = (σt,⊥, [∗],⊥), fO(σt,⊥, [vt],⊥) = [vt], fNS(σt,⊥, [vt],⊥) = σs

rfrfrf = (σf ,⊥,⊥, [∗]), fO(σf ,⊥,⊥, [vf ]) = [vt], fNS(σf ,⊥,⊥, [vf ]) = σs
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The stateful implementation of select emits output only every other firing. If the

circuit implementation equates a firing with a clock cycle, then the stateful imple-

mentation operates at only half throughput. Nevertheless, it can be pipelined to full

throughput by adding rules that read t or f simultaneously with the next s.

2.3 TDF Language

TDF (Task Description Format) is a language for designing streaming applications

targeting hardware. The language is a fairly direct implementation of the process

network model described in the previous section. In essence, TDF is a minimal

hardware description language with streaming features. This level of abstraction is

well suited for synthesis yet is still amenable to stream-related optimizations. The

language is intentionally small, omitting many high level features such as aggregate

data structures (records), type inheritance, and structured loops. Instead, we view

TDF as an intermediate level language that might be compiled from a higher level

language such as Streams-C [Gokhale et al., 2000].

This section provides a brief overview of TDF. A more complete definition of the

language is available in [Caspi, 2005].

2.3.1 TDF Overview

TDF has two levels of design: the behavioral language is used to specify SFSM ac-

tors, and the compositional language is used to instantiate and connect actors via

streams. Compositions are themselves actors and may be instantiated within other

compositions. Thus, a TDF application is a hierarchical graph of stream connected

behavioral actors.
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2.3.1.1 Types

TDF scalar types include booleans and integers. Integers are signed or unsigned bit

vectors with explicit bit width, e.g. unsigned[9]. A TDF array, or memory segment,

is a list of identically typed scalars. A TDF stream is a queue of identically typed

scalars. The type of a computed expression may be inferred automatically from

the types of its components, e.g. a+b has type unsigned[9] if a and b have type

unsigned[8].

2.3.1.2 Actor Prototypes

Each actor is declared with a prototype that lists its name, its streams, and its

instantiation parameters. For example, a zero-length encoder might be declared as:

zle (input unsigned[7] i, output unsigned[8] o) {...}

2.3.1.3 Instantiation Parameters (param)

An actor may have instantiation parameters, which are inputs whose value is bound

once, when the actor is instantiated. This is in contrast to stream inputs, whose value

changes at run-time. Instantiation parameters may be used to specialize an actor with

a particular initialization value, operating mode, or bit width. For example, a zero-

length encoder with parameterized data width might be declared as:

zle (param unsigned[8] w,

input unsigned[w] i, output unsigned[w+1] o) {...}

Parameter values are propagated to every use, and the uses undergo partial evaluation

at compile time. Thus, in the example above, a compiler would generate a specialized

39



Chapter 2. Language and Theoretical Foundation

datapath having the specified bit width. A compositional actor may pass its instan-

tiation parameters to actors that it instantiates, and so on down the compositional

hierarchy.

2.3.2 TDF SFSMs

The heart of TDF is the behavioral language used to specify SFSMs (streaming finite

state machines). An SFSM is an extended finite state machine where each state has

a specification of desired inputs and an action. All input and output occurs through

streams. An SFSM may also have register variables to store local, persistent data

state.

2.3.2.1 SFSM Firing

Each state includes an input signature, which is a comma separated list of input

streams to wait for. On entry into a state, the SFSM issues blocking reads to the

inputs specified in the present state’s input signature. The SFSM then waits to be

enabled by (1) the presence of tokens on the input streams and (2) the availability

of space of the output streams. Once enabled, the SFSM may fire, i.e. consume the

present state’s inputs and evaluate the state’s action. The process then repeats for

the next state, or for the same state if no state transition is specified. We will say

interchangeably that an SFSM, a state, or a signature is enabled if (1) and (2) are

satisfied for the present state.

2.3.2.2 State actions

A state action is a loop-free sequence of C-like statements, evaluated when a state

fires. An action may compute new values from input and register values, update

register variables, produce output tokens, and transition to a next state via goto.
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An if-then-else provides control for simple decision making. Temporary variables

may be declared inside nested statement blocks to name intermediate values. The C

preprocessor may be used for substitution macros.

2.3.2.3 Stream access

We use the convention from Silage [Hilfinger, 1985] that the name of an input stream

in expressions refers to its most recently consumed value. The stream’s history of

values may be referenced using the @ operator, such that i@0 is the most recently

consumed value (same as i), i@1 is the previously consumed value, and so on. An

assignment to an output stream denotes emitting an output token, e.g. o=1. Thus, a

4-tap FIR filter might be expressed as a single state SFSM with an action: y = C0*x

+ C1*x@1 + C2*x@2 + C3*x@3.

2.3.2.4 Example: ZLE

Figure 2.1 lists sample TDF for a zero-length encoder (ZLE) SFSM. A similar encoder

is used in JPEG and MPEG encoding following quantization and zig-zag scan. The

ZLE’s job is to recognize runs of zero valued input tokens and to compress them into

code words specifying the run length. Non-zero input tokens are passed untouched

to the output stream. Symbolic states are useful for recording whether or not the

encoder is presently in a run of zeros. State start is the normal state that passes

non-zero tokens and looks for the first zero of a run. State zeros counts zero tokens

in a run, using register cnt, until the run is terminated by consuming a non-zero or by

reaching a maximum allowable run length. The state then emits a token specifying

the run length. If a run is terminated by consuming a non-zero, then that non-zero

is passed to the output in state pending before returning to state start.
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#define ZERO_MASK 0b10000000 /* 128, mask for run length codewords */
#define MAX_ZEROS 0b01111111 /* 127, maximum allowable run length */

zle (input unsigned[7] i, output unsigned[8] o)
{
unsigned[8] cnt=0;

state start (i) :
if (i==0) { cnt=1; goto zeros; }
else { o=i; }

state zeros (i) :
if (i==0) {
if (cnt==MAX_ZEROS) { o=ZERO_MASK|cnt; cnt=0; }
else { cnt=cnt+1; }

}
else { o=ZERO_MASK|cnt; cnt=0; goto pending; }

state pending () :
o=i;
goto start;

}

Figure 2.1: Zero length encoder SFSM in TDF
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2.3.2.5 Synthesizable Timing Model

The synthesis methodology of Chapter 3 equates an SFSM state with an RTL be-

havioral state, evaluating a state action in one cycle. The implementation of streams

in Chapter 3 permits only one token to be consumed or produced on a stream per

cycle. To reflect this timing model and rate restriction, the zero length encoder’s

production of the first non-zero following a run of zeros is implemented in a separate

state pending, rather than emitting a second token in state zero. It is important to

note that this timing model and rate restriction are not inherent to the TDF language

and, in principle, need not be exposed to the TDF programmer. There is nothing

preventing a compiler from rescheduling an SFSM by moving statements, creating

new states, or applying loop scheduling techniques such as software pipelining. Such

transformations would be useful for making an SFSM satisfy synthesis restrictions

and for improving performance in general. The ZLE can be pipelined to avoid the

cycle lost in state pending even with the restriction of one token per stream per firing.

The production in pending should be moved to a modified state start’ that reads a

new input but emits output associated with a prior firing. The output would “catch

up” to the input at the next zero input, where the original start emits nothing, and

start’ emits its prior output.

2.3.2.6 Termination

Streams are terminated by a special end-of-stream token. Termination of an output

stream may be specified using the close statement, e.g close(o). Termination of

an input stream may be caught in an input signature, e.g. state zeros(eos(i)).

A state may have multiple input signatures to specify a different action for receiving

data than for receiving end-of-stream. This is a simple form of pattern matching built

into the input signature, and it is deterministic, since only one signature would match
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the inputs. For example, the zero length encoder state zeros(i) could be augmented

with a second signature zeros(eos(i)) to properly terminate a run of zeros if the

input stream closes. An SFSM may transition to a built-in state done to indicate no

further action. If a state with no explicit end-of-stream handling tries to consume

data from a closed input stream, the default behavior is to close all output streams

and to terminate the SFSM. Thus, end-of-stream will be propagated to the rest of

the application for proper termination.

2.3.2.7 Calls and Exceptions

A state action may include an inline call to another actor. Such a call is syntactic

sugar for exchanging a set of tokens, one per stream, with a private instance of the

called actor. In the spirit of a function call, the caller sends tokens, then waits for

return tokens before proceeding. The call may be implemented by connecting the

two actors via streams, in which case the calling state must be split into a sending

state and a receiving state. Otherwise, the call may be implemented by inlining the

called actor’s code into the caller. A call syntax is particularly useful for handling

exceptions, since the caller SFSM must wait for return tokens before proceeding.

While waiting, the SFSM produces no other outputs and consumes no other inputs,

thus stalling any dependent parts of the application until the exception is resolved.

Since TDF behavior is deterministic regardless of timing, this mechanism provides a

consistent and resumable way to halt a distributed application for exception handling.

2.3.2.8 Multiple Enabled Signatures

TDF syntax allows writing multiple cases for a state, each having a different input

signature and action. If the signatures reference the same streams and differ only in

matching data versus end-of-stream, then only one signature can match at a time,
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and behavior will be fully deterministic. If signatures reference different streams, then

more than one may match at a time, e.g. state foo (x): X; state foo (y): Y;.

This syntax is useful for expressing certain transformations on SFSMs where blocking

read is insufficient, including composition, decomposition, and pipelining. Which sig-

nature is chosen for firing may depend on timing, since inputs need need not arrive at

the same time. If the inputs of several signatures are all available, then an arbitrary

choice must be made. TDF does not specify which signature will match if more than

one signature is simultaneously enabled. If the actions of the multiple signatures do

not properly match, then the resulting behavior will be non-deterministic. Unfortu-

nately, it is difficult to express a minimal but sufficient restriction on how the actions

should match in order to guarantee determinism. Our design philosophy is to prevent

a programmer from using multiple enabled signatures, but to allow the compiler to

generate them during mapping and optimization, where determinism is guaranteed

by construction.

Consider, for example, an SFSM state that needs inputs x and y but which, for

reasons of performance, wants to make forward progress even if only one input is

available. The SFSM might be written as follows:

state foo (x) : X; goto gety;

state foo (y) : Y; goto getx;

state foo (x,y) : X; Y; goto next;

state getx (x) : X; goto next;

state gety (y) : Y; goto next;

The resulting behavior will be deterministic if the effects of statements X and Y are

independent of which one is evaluated first. For example, X and Y must not write

incompatible values to the same register or output stream. It should be possible

to construct a compiler analysis to recognize whether such multi-signature code is
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deterministic. The corresponding semantic restrictions are discussed in Section 2.4.4.

Now consider an SFSM that has been decomposed by clustering states into sep-

arate, communicating sub-machines. Only one sub-machine is active at a time, and

it may transfer control to another sub-machine by sending a control token. When

inactive, a sub-machine enters a wait state of the form:

state wait (m1) : goto return_from_m1;

state wait (m2) : goto return_from_m2;

Streams m1 and m2 denote a return of control from different, external sub-machines.

The states that resume control, return from m1 and return from m2, are unrelated,

so we cannot expect that their effect on registers and streams will be independent

of order. Furthermore, the waiting sub-machine cannot know which return token to

expect first, since the other sub-machines may transfer control amongst themselves.

The compiler analysis proposed above for order independence would seem to indicate

non-deterministic behavior. Nevertheless, there is no question of order: there is only

one control token among all the sub-machines, so no more than one signature will be

enabled at a time. Here, determinism is guaranteed by construction.

2.3.3 TDF Composition

A TDF compositional actor contains statements to instantiate and connect other

actors via streams. Hierarchical compositions are supported by instantiating and

connecting other compositional actors. However, recursive compositions are not sup-

ported.

2.3.3.1 Instantiation and Connection

In the compositional language, a stream in an expression refers to the entire stream,

not to an individual value. With this interpretation, we use conventional assignment

46



Chapter 2. Language and Theoretical Foundation

filter1 (input signed[16] i, output signed[16] o) {...}

filter2 (input signed[16] i, output signed[16] o) {...}

filter (input signed[16] i, output signed[16] o)
{
signed[16] t;
filter1(i,t);
filter2(t,o);

}

Figure 2.2: Composition of two filters in TDF

signed[16] funfilter1 (input signed[16] i) {...}

signed[16] funfilter2 (input signed[16] i) {...}

signed[16] funfilter (input signed[16] i)
{
funfilter = funfilter2(funfilter1(i));

}

Figure 2.3: Composition of two filters in TDF, functional form

statements and calls to build and connect a stream graph. A function call is used to

instantiate an actor, i.e. add it to the graph, and the call arguments indicate stream

connections. Assignment to a stream also indicates a connection. Feedback loops in

the stream graph are perfectly legal. Intermediate streams may be declared inside a

compositional actor as named local variables, with an optional specification of stream

buffer size and initial contents1.

1Initial stream contents are not presently supported in the synthesis methodology of Chapter 3
targeting FPGAs. They would also be difficult to support in an ASIC, where the startup value of
storage cells is usually undefined. Instead, initial stream contents can be implemented by adding an
initial state to the stream producer that injects initial values into the stream.
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2.3.3.2 Example: Filter Composition

Figure 2.2 shows an example composition of two filters in series. An intermediate

stream t is first declared. A call to each filter is used to instantiate and connect it,

with t feeding the output of one filter into the input of the next. Figure 2.3 shows

an alternate, functional syntax for composition. Each actor is declared to have a

return stream, which is a stylized output stream. A call to the actor is then not only

an instantiation, but an expression referring to the actor’s return stream, which may

be used syntactically like any other named stream. An actor’s own return stream

has the same name as the actor itself, and it may be used syntactically like any

output stream. Composition in TDF using return streams resembles composition in

a functional language like Haskell or SML. However, it is not truly functional, since

the called actors may have local state. This syntax is merely being used to build a

stream graph.

2.3.3.3 Fanout and Fanin

A TDF stream may have only one producer and one consumer. Fanning out a stream

to several consumers requires an intermediate actor, implementing a token copy. TDF

has a built-in copy actor to serve that purpose. The actor is polymorphic with respect

to the type and number of streams connected to it, requiring only that the connected

streams be compatible, e.g. copy(i,o1,o2,o3). TDF also supports automatic infer-

encing of a copy operator for any stream that appears to be referenced by multiple

consumers. Merging a stream from several producers also requires an intermediate

actor, implementing an arbitrator. TDF has no built-in arbitrators. However, it has

a built-in cat actor that merges streams by concatenating the bits of corresponding

input tokens into a wider output token.
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2.3.3.4 Memory Segments

TDF avoids the traditional mechanism of unified, shared memory, since shared mem-

ory obfuscates dependencies and often becomes a performance bottleneck. Instead,

TDF supports separate, local memories, termed segments. A segment is associated

with a particular actor that owns it. The segment may be declared inside that actor

or passed to it as a param argument. TDF provides two ways to access a segment:

as an array in an SFSM, or via streams. An SFSM can directly access an array vari-

able using array subscripting. The array memory is treated as part of the SFSM’s

datapath, and the access latency is tolerable for relatively small arrays.

In general, we wish to abstract the timing of memory access and to improve its

performance by pipelining and exploiting sequential access patterns. We also wish to

decouple address generation from data consumption where possible, to create feed-

forward flows. These goals are easily met in a streaming paradigm by accessing

memories through streams. TDF has a family of built-in actors, termed segment

operators, which provide a stream interface and an address generator for a segment,

using one of the following access modes:

• Sequential read (source) — with a stream for data out,

• Sequential write (sink) — with a stream for data in,

• Sequential read/write (FIFO) — with streams for data in and out,

• Random access read — with streams for address in and data out,

• Random access write — with streams for address in and data in,

• Random access read/write — with streams for address in, read/write mode in,

and data in and out.

Segment operators hide the architecture-specific implementation and timing of mem-

ory access. Segment operators may be instantiated and connected in a compositional

actor using the usual syntax.
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2.3.4 Generating TDF from a Higher Level Language

The TDF language is small but easy to synthesize. Hence, it is a suitable target for

compiling from a higher level language. Features missing in TDF which would be

useful in a higher level streaming language include:

• Aggregate data types (records) for streams and variables.

• Type inheritance. Ptolemy [Ptolemy, 2005] makes its actors polymorphic by

defining a hierarchy of subsumption for stream types: a boolean is an integer,

which is a float, which is a double. It is permissible to connect a producer

of integers to a consumer of floats. TDF has a limited form of subsumption,

permitting type upgrades on integers (bit vectors) from narrow to wide and

from unsigned to signed.

• Arithmetic expressions on streams as a shorthand for composing synchronous

dataflow graphs. E.g. a=b+c would denote a streaming adder.

• Composition generators. TDF presently has no way to build an FIR filter

with a parameterized number of taps. A generator language with iteration or

recursion would address this need, e.g. the for loop in Verilog. The iteration

would be partially evaluated at compile time to form the stream composition.

• Structured loops. SFSMs with goto are “spaghetti code”—hard to read and

hard to optimize. A higher level actor language should include structured

loops such as “for,” “do-while,” or “repeat-until.” Such loops are amenable

to traditional optimization (strength reduction, lifting invariants) and loop

scheduling (loop unrolling, software pipelining).

Imperative languages with stream read/write have emerged as a popular way to

express streaming applications, e.g. Streams-C [Gokhale et al., 2000], YAPI [de Kock

et al., 2000], TinySHIM [Edwards and Tardieu, 2005], and Catapult C [Catapult C,

2005]. The actors of such languages are relatively easy to translate into TDF SFSMs.
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The key observation is that an SFSM state is akin to a basic block with a stream

read header2. Consequently, an imperative language actor might be translated into

TDF as follows:

1. Form basic blocks, forcing a new block at every stream read.

2. Optionally collapse if-then-else flows by repeatedly merging single-entry, read-

free blocks into their predecessor.

3. Convert every such block into an SFSM state.

The above translation does not include loop optimizations and loop scheduling.

Translating loops into TDF can benefit from many existing compiler techniques, par-

ticularly those of vectorizing and parallelizing compilers. A loop over an array is

analogous to a streaming actor, where array accesses are linearized onto streams. A

series of loops communicating through intermediate arrays is then analogous to a

pipeline of stream connected actors. Compaan [Turjan et al., 2005], which translates

from Matlab to YAPI, includes a polytope-based analysis of array access patterns,

so it can convert intermediate arrays into streams. Loop factoring is analogous to

splitting an actor into a series composition of two actors. Loop fusion is analogous

to merging a series composition of two actors into one. Such transformations are

useful for managing the depth of streaming pipelines. Loop unrolling and vectoriza-

tion are analogous to splitting an actor into data-parallel actors (i.e. vector lanes).

Such transformations could be used to unfold a computation to match an available

amount of hardware and to manage the granularity of individual actors, guided by

an architectural area and timing model.

2An SFSM state action has loop free control flow and a DAG for local dataflow. A state action
may include if-then-else structures and nested statement blocks. Nevertheless, those if-then-else
structures synthesize into multiplexers in hardware, so they indicate predication rather than true
branching.

51



Chapter 2. Language and Theoretical Foundation

2.3.5 Implementing BDF

For completeness, we demonstrate that TDF can implement Buck’s boolean controlled

dataflow (BDF) [Buck, 1993]. BDF is a particularly simple form of dynamic dataflow,

derived by extending synchronous dataflow (SDF) with two canonical, dynamic rate

actors: select and switch. To complete the reduction, we need to implement select,

switch, and SDF actors as TDF SFSMs.

The select actor selectively passes a token from either of two data inputs to one

data output, based on a boolean select input. The switch actor selectively passes a

token from one data input to either of two data outputs, based on a boolean select

input. These actors may be implemented in TDF using state sequences, where an

initial state reads the select input and branches to two possible subsequent states.

Figure 2.4 shows TDF code and corresponding TDFPN firing rules and functions for

the select actor. Figure 2.5 shows the same for switch. The TDF implementations

assume that data streams are unsigned with parameterized bit width, but those types

may be easily substituted. The multi-state implementation of switch is chosen for

symmetry with select, but it can alternatively be implemented in a single state with

an if to conditionally write to either output stream.

Theorem 2.3.1. TDFPN can implement BDF.

Proof. BDF consists of streams, ideal delays, SDF actors, select and switch. Streams

are built into TDFPN. An ideal delay corresponds to an initial token on a stream.

An SDF actor can be expressed as a single state SFSM with one firing rule and

unconditional output. Implementations of select and switch are shown in Figures 2.4

and 2.5.

Corollary 2.3.2. TDFPN is Turing Complete.

Proof. BDF can implement a Turing machine [Buck, 1993], and TDFPN can imple-

ment BDF.
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select (param unsigned[8] w,

input boolean s,

input unsigned[w] t, input unsigned[w] f,

output unsigned[w] o)

{

state S (s) : if (s) goto T; else goto F;

state T (t) : o=t; goto S;

state F (f) : o=f; goto S;

}

rsrsrs = (σs, [∗],⊥,⊥), fO(σs, [vs],⊥,⊥) = ⊥, fNS(σs, [vs],⊥,⊥) = vs?σt : σf

rtrtrt = (σt,⊥, [∗],⊥), fO(σt,⊥, [vt],⊥) = [vt], fNS(σt,⊥, [vt],⊥) = σs

rfrfrf = (σf ,⊥,⊥, [∗]), fO(σf ,⊥,⊥, [vf ]) = [vt], fNS(σf ,⊥,⊥, [vf ]) = σs

Figure 2.4: TDF and TDFPN implementations of BDF select actor

switch (param unsigned[8] w,

input boolean s,

input unsigned[w] i,

output unsigned[w] t, output unsigned[w] f)

{

state S (s) : if (s) goto T; else goto F;

state T (i) : t=i; goto S;

state F (i) : f=i; goto S;

}

rsrsrs = (σs, [∗],⊥), fO(σs, [vs],⊥) = (⊥,⊥), fNS(σs, [vs],⊥) = vs?σt : σf

rtrtrt = (σt,⊥, [∗]), fO(σt,⊥, [vt]) = ([vt],⊥), fNS(σt,⊥, [vt]) = σs

rfrfrf = (σf ,⊥, [∗]), fO(σf ,⊥, [vf ]) = (⊥, [vf ]), fNS(σf ,⊥, [vf ]) = σs

Figure 2.5: TDF and TDFPN implementations of BDF switch actor
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2.4 TDFPN Denotational Semantics

Whereas operational semantics deal with the execution of a program, denotational

semantics deal with its underlying meaning. It is easy to reason about the meaning of

an individual actor, but what is the meaning of an entire composition? What is its in-

tended behavior? Is that behavior determinate and unique? A major difficulty of tra-

ditional parallel programming is that the meaning or intended behavior of a program

is not obvious, lost in a myriad of synchronization primitives and implementation

details. Streaming models, on the other hand, have been more amenable to formal

modeling of denotational semantics [Kahn, 1974] [Lee and Sangiovanni-Vincentelli,

1998]. With those mechanisms, it becomes possible to prove important properties of a

model or of a particular program, including whether it is determinate, will deadlock,

or will run in bounded memory. Those properties translate into compiler analyses,

optimizations, and synthesis methods that yield more efficient implementations.

In this section, we outline the denotational semantics for TDF process networks

(TDFPN). We show that TDFPN is a special case of Lee’s dataflow process net-

works (DFPN) and thus inherits important properties such as semantic equivalence

(full matching between operational and denotational semantics), determinacy, and

undecidability. We begin by reviewing mathematical mechanisms (Section 2.4.1) and

DFPN denotational semantics (Section 2.4.2), then develop TDFPN denotational

semantics (Sections 2.4.3, 2.4.4).

2.4.1 Fixed Point Semantics for Streaming

We adopt the tagged signal denotational model from [Lee and Sangiovanni-Vincentelli,

1998]. In this model, the meaning or behavior of a streaming system is captured by its

communication traces, or signals, i.e. by the total history of communication on every

inter-actor connection. In this view, an actor is a function F from its input traces to
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its output traces. Note that those traces may be infinite, such as an infinite sequence

of tokens. An actor in this view is intrinsically functional, or stateless. Nevertheless, a

stateful actor may be rewritten as a stateless actor by exposing its state as a feedback

stream. The behavior of a system is then the solution to a system of equations relating

all streams and actors, e.g. Y = F (X), Z = G(Y ). A determinate system would have

only one solution for a given set of inputs, so we need a more specific definition to

distinguish among possibly many solutions. For mathematical convenience, we recast

the system as a single function FFF , composed of all actor functions, and recast the

system of equations to be:

XXX = FFF (XXX,III) (2.3)

where III is the tuple of input traces, and XXX is the tuple of intermediate and output

traces. The behavior of a system may now be defined as the least fixed point solution

to equation (2.3). The existence and uniqueness of a solution would be guaranteed

by a family of fixed point theorems if the communication traces were defined in an

appropriate topology and if the actor functions were continuous.

The Scott topology deals specifically with sequences. Its use in denotational

semantics of process networks was introduced by Scott [Scott, 1970] and Kahn [Kahn,

1974], and it receives an excellent summary in [Lee, 1997]. We review it here for

completeness. The key observation is that sequences with a prefix order comprise a

complete partial order (CPO), where a fixed point theorem applies.

A partial order is a relation v on a set S that is:

• reflexive : s v s,

• transitive : (s v s′) ∧ (s′ v s′′) =⇒ (s v s′′),

• antisymmetric : (s v s′) ∧ (s′ v s) =⇒ (s = s′),
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for all s, s′, s′′ ∈ S. The order is partial, not total, since there may be elements

s, s′ ∈ S that are unrelated: s 6v s′, s′ 6v s. A set with a partial order relation is a

partially ordered set or poset. Sequences with the prefix order form a poset, where

s v s′ means that s is a prefix of s′, or equivalently that s′ = s.s′′ for some s′′ ∈ S.

Let s.s′′ denote a sequence concatenation, and let [v1, v2, v3, ...] denote a particular

sequence. Let λ = [] denote the empty sequence, which is a bottom element for the

poset: λ v s ∀s ∈ S. Bottom is traditionally denoted by ⊥. An upper bound u

of two sequences s, s′ ∈ S is a common extension: s v u, s′ v u. A least upper

bound or join of two sequences, st s′, is an upper bound that is a prefix of any other

upper bound. A lower bound l of two sequences s, s′ ∈ S is a common prefix: l v s,

l v s′. A greatest lower bound or meet of two sequences, s u s′, is a lower bound

of which any other lower bound is a prefix. A chain C ⊆ S is a possibly infinite,

ordered list of increasing sequences (s1 v s2 v ...). A complete partial order (CPO)

is a poset with a bottom, where every increasing chain C ⊆ S has a least upper

bound tC ∈ S. Sequences with the prefix order and empty sequence as bottom form

a CPO. Here, an increasing chain represents the repeated extension of a sequence

through computation. Tuples of sequences with a pointwise prefix also form a CPO,

so all our results extend naturally to tuples. Using boldface for tuples, let sss ∈ SM

denote an M-tuple of sequences, let Λ =⊥⊥⊥ denote a tuple of empty sequences (bottom

for tuples), let sss.s′s′s′ denote a pointwise concatenation, let sss v s′s′s′ denote a pointwise

prefix, let sssts′s′s′ denote a pointwise join, let sssus′s′s′ denote a pointwise meet, and define

sss ∈ SM to be finite whenever all its component sequences are finite.

A monotonic function f : S → S on a CPO is one where:

(s v s′) =⇒ (F (s) v F (s′)) (2.4)

For sequences (and tuples thereof), this definition means that whenever the input to
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a monotonic function is extended (from s to s′), the output is also extended, or stays

the same. A monotonic function on sequences is causal in the sense that when input

is added, the function cannot change its mind and modify old output, it can only add

to the existing output. This is an appropriate, practical limitation for computable

functions.

A fixed point theorem for CPOs states that a solution to X = F (X) always exists

when F is monotonic. Thus, a system of monotonic actors will have a fixed point

behavior in these denotational semantics. However, that behavior may not be unique,

meaning the system may not be determinate.

A continuous function f : S → S on a CPO is one where, for any increasing chain

C ⊆ S,

F (tC) = tF (C) (2.5)

where F (C) refers to the set (chain) inferred by applying F to each element of C. A

continuous function is monotonic, as evidenced by considering any chain of two ele-

ments. The interesting part of this definition applies to infinite chains. For sequences

(and tuples thereof), it means that the output of a continuous function with infinite

input (F (tC)) is the same as its limit output with finite subsequences of that input

(tF (C)). Again, this is an appropriate, practical limitation of computable functions,

which provides that a function need not wait for its infinity of inputs before emitting

output. In fact, it must not wait.

A fixed point theorem for CPOs states that a solution to X = F (X) always

exists and is unique when F is continuous. Thus, a system of continuous actors is

determinate. Furthermore, the theorem states that the solution can be constructed

by repeated applications of F to the bottom element:

X = F (F (...F (⊥)...)) (2.6)
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This construction suggests an operational semantics for evaluating process networks

by repeatedly evaluating every actor on intermediate inputs and results, building up

from initially empty streams.

Kahn [Kahn, 1974] describes a rudimentary actor language based on blocking

reads and proves that the resulting actors are continuous. As a consequence, Kahn

process networks are determinate. Kahn and MacQueen [Kahn and MacQueen, 1977]

provide a more complete language for the same model, retaining continuity.

2.4.2 Dataflow Process Networks (DFPN)

The naive operational semantics suggested by equation (2.6) are not always practical.

Continuity absolves an implementation from having to atomically process infinite

inputs but not infinite outputs. If an actor function F is specified to emit an infinite

output sequence, then (2.6) specifies that it must do so before proceeding to any

other action. An implementation with these semantics may require infinite buffering

for the output, and it may force other actors to stall indefinitely. A more practical

operational semantics would instead produce finite output sequences in a series of

steppings, perhaps one token at a time. These are the semantics associated with

firing, as in synchronous dataflow (SDF) [Lee and Messerschmitt, 1987b], cyclo-static

dataflow (CSDF) [Bilsen et al., 1996], and boolean controlled dataflow (BDF) [Buck,

1993]. Unfortunately, any discrepancy between the operational and denotational

semantics makes program analysis and optimization more difficult.

Lee [Lee, 1997] defines a streaming model, dataflow process networks (DFPN),

where both the operational and denotational semantics incorporate firing. At each

firing, a DFPN actor waits to be enabled by any of several finite input patterns,

called firing rules, then consumes those inputs and emits finite outputs. Lee defines

a dataflow actor from M inputs to N outputs to be a pair A = (f, R), where
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1. R ⊆ SM is a set of finite sequences, called firing rules, denoting possible input

patterns,

2. f : R → SN is a firing function, denoting the actor’s reaction to each input

pattern,

3. f(rrr) is finite for all rrr ∈ R, and

4. no two distinct rrr, r′r′r′ ∈ R are joinable.

Whenever a pattern rrr ∈ R appears as a prefix of the input sss, i.e. rrr v sss, the actor

consumes that pattern and produces the finite output f(rrr). The associated Kahn

process, mapping infinite input sequences to infinite output sequences, is then:

F (sss) =

f(rrr).F (s′s′s′) if ∃ rrr ∈ R s.t. sss = rrr.s′s′s′

Λ otherwise

(2.7)

This self-referential definition mirrors the operational semantics whereby the actor

consumes inputs and produces outputs incrementally, through a series of firings.

Nevertheless, the definition is mathematically well founded and denotational. Lee

proves that, given (f, R), the process F exists, is unique, and is both monotonic and

continuous3. Consequently, dataflow process networks are determinate.

2.4.3 Equivalence of TDFPN and DFPN

TDF process networks (TDFPN) and dataflow process networks (DFPN) are very

similar, both based on a similar notion of firing rules. They differ in only two ma-

3 Lee [Lee, 1997] shows that F in Equation (2.7) can be defined as the least fixed point of
a functional, F = φ(F ), and that the functional φ is continuous over a CPO of functions. The
fixed point theorem for CPOs then indicates that F exists, is unique, and can be constructed by
repeatedly applying φ to an initial function that generates empty sequences. This construction yields
an operational semantics with firing.
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jor respects: state and value matching. First, TDFPN actors are stateful, whereas

DFPN actors are functional, or stateless. Nevertheless, state can be incorporated into

a functional paradigm by exposing it as explicit an input and output of a function.

Hence, this difference is in structure only, not in expressive power. Second, DFPN

firing rules support arbitrary value matching, whereas TDFPN rules do not. We show

that (1) TDFPN is a special case of DFPN, (2) TDFPN with one rule per state is

equivalent to DFPN with sequential firing rules, and (3) TDFPN extended with arbi-

trary value matching is equivalent to DFPN. We can demonstrate the equivalence of

the two models by transforming actors from one model to the other. The equivalence

implies that TDFPN inherits all of the properties of DFPN, including its fixed point

denotational semantics and determinacy.

The equivalence described herein is between DFPN and the abstract TDFPN,

both with infinite buffering. TDFPN operational semantics allow for finite buffers,

but that is an implementation issue. Parks [Parks, 1995] addresses the discrepancy

between infinite denotational buffers and finite operational buffers with an elegant

transformation on process networks. In the transformation, each stream is converted

into a feedback loop carrying capacity tokens, and the stream producer is modified to

wait for a capacity token before emitting to the stream. Parks’ transformation applies

equally well to TDFPN. We differ from his view only in having explicitly specified a

capacity check in the operational semantics of SFSMs.

2.4.3.1 Equivalence Theorems

Theorem 2.4.1. TDFPN is a special case of DFPN.

Proof. See the reduction in Section 2.4.3.3.

Theorem 2.4.2. TDFPN extended with value matching is equivalent to DFPN.

Proof. See the reductions in Sections 2.4.3.3 and 2.4.3.4.
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Theorem 2.4.3. TDFPN with one rule per state is equivalent to DFPN with sequen-

tial firing rules.

Proof. See the reductions in Sections 2.4.3.5 and 2.4.3.6.

2.4.3.2 Notation

An SFSM was defined in equation (2.2) as:

SFSM = (Σ, σ0, σ, I, O, R, fNS, fO) (2.2)

For parallelism with DFPN notation, we assume a unified stream type S, such that

I = SM , O = SN . We also assume that data state is rolled into FSM state, a

convention commonly used in the literature of sequential synthesis. Thus, a TDFPN

actor may be defined more simply as:

A = (Σ, σ0, σ, R, fNS, fO) (2.8)

Using the extended, multiple signature definition of R from Section 2.2.3 with the

unified type S, we have: R ⊆ Σ × S, fNS : Σ × SM → Σ, fO : Σ × SM → SN .

In comparison, a DFPN actor is defined as A′ = (f ′, R′), where R′ ⊆ SM ′
and

f ′ : R′ → SN ′
(using primes to distinguish DFPN symbols from TDFPN symbols).

In the reductions, we ignore end-of-stream.

2.4.3.3 Reducing TDFPN to DFPN

A TDFPN actor may be converted into a DFPN subgraph by exposing its state in

a feedback loop, as in Figure 2.6. For convenience, we define projection functions

on M -tuples: πi(sss) is the ith component, and πj..k(sss) is the tuple of jth through kth

components. A TDFPN actor A = (Σ, σ0, σ, R, fNS, fO) from M inputs to N outputs
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TDFPN to DFPN Reduction

A’

SM

SN

!"A

SM

SN

TDFPN
A = (!, #0, #, R, fNS, fO)

DFPN

A’ = (f’, R’)

Figure 2.6: Reduction of a TDFPN actor to a DFPN subgraph, exposing state

is equivalent to a DFPN actor A′ = (f ′, R′) from M + 1 inputs to N + 1 outputs,

where:

• the first input and output carry state, i.e. the actor maps (Σω × SM) to

(Σω × SN),

• the state input and output are tied in a feedback loop,

• the state feedback loop contains an initial token σ0,

• R′ = R (see below),

• f ′ : R′ → (Σω × SN) is defined by f ′(r′r′r′) = ( [fNS(π0(r
′r′r′))], fO(π1..M(r′r′r′)) ).

The definition R′ = R (which is technically sloppy in its types) is shorthand for saying

that we map each TDFPN firing rule rrr = (σ,sss) to a DFPN firing rule r′r′r′ = ([σ], sss).

The DFPN firing rule would match a single state token on its state input.

This reduction can be taken in the context of different restrictions on multiple

enabled firing rules, which are discussed further in Section 2.4.4. TDFPN with one

rule per state reduces to DFPN with no joinable rules TDFPN with multiple rules

per state reduces to DFPN with joinable rules.
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2.4.3.4 Reducing DFPN to TDFPN with value matching

A DFPN actor may be converted into a TDFPN actor, extended with value matching,

having a single state. All of the DFPN actor’s firing rules would associate with that

state. Specifically, a DFPN actor A′ = (f ′, R′) from M inputs to N outputs is

equivalent to an extended TDFPN actor A = (Σ, σ0, σ, R, fNS, fO) from M inputs to

N outputs, where:

• Σ = {σ0} for some dummy σ0

• R is inferred from R′ by mapping each r′r′r′ ∈ R′ to rrr = (σ0, r
′r′r′),

• fNS : Σ× SM is defined by fNS(σ0) = σ0,

• fO : Σ× SM is defined by fO(σ0, r
′r′r′) = f ′(r′r′r′) ∀r′r′r′ ∈ R′.

This reduction, together with the reduction from TDFPN to DFPN in Section 2.4.3.3,

proves the equivalence of TDFPN extended with value matching and DFPN.

2.4.3.5 Reducing DFPN with sequential firing rules to TDFPN with one rule

per state

Our implementation of TDFPN lacks value matching, so the conversion of DFPN rules

R′ to TDFPN rules R in the previous section is not always possible. A direct conver-

sion is possible only for DFPN rules that match “∗” and “⊥”. However, TDFPN can

emulate more general DFPN rules by using a sequence of stream reads, value tests,

and branches. Lee and Parks [Lee and Parks, 1995] formalize a restriction on DFPN

firing rules, termed sequential firing rules, that permits this emulation. A DFPN

actor A′ = (f ′, R′) has sequential firing rules if the following procedure succeeds:

1. Find an input j such that ∀ririri ∈ R′, ∃vi s.t. [vi] v πj(ririri). That is, find an input

such that all firing rules require at least one token from that input (though each

rule may require a different value vi). If no such input exists, fail.

63



Chapter 2. Language and Theoretical Foundation

2. For the choice of input j, divide the firing rules into subsets, one for each specific

token value vi at the head of πj(ririri). If [vi] = [∗], then the firing rule ririri should

appear in all such subsets.

3. Remove the first element [vi] from every ririri.

4. If all subsets have empty firing rules, then succeed. Otherwise, repeat these

four steps for any subset with any non-empty firing rules.

This recognition procedure largely mirrors the decision tree required to evaluate se-

quential firing rules without using value matching. We can construct a TDFPN actor

that emulates a DFPN actor with sequential firing rules as follows, in unison with

the procedure above. Steps (1) and (3) infer a state that consumes one token from

input j and compares it to all possible values [vi]. Step (4) infers a choice between

completing the match of the DFPN firing rule or branching to a next state to read

another input. If the match is complete, the state should emit the corresponding

DFPN output and return to the first state for matching firing rules. Otherwise, the

state should branch to a next state inferred by step (2). There will be either one next

state per value [vi], or a single next state if [vi] = [∗] ∀i. Each next state is built

by iterating the construction on the remaining, modified firing rules. The resulting

TDFPN actor has exactly one rule per state.

2.4.3.6 Reducing TDFPN with one rule per state to DFPN with sequential

firing rules

A TDFPN actor with one firing rule per state can be converted into a DFPN actor

with sequential firing rules by direct application of the procedure in Section 2.4.3.3.

For each state σi, there is one TDFPN rule, ririri = (σi, sisisi), inferring one DFPN rule,

r′ir
′
ir
′
i = ([σi], sisisi), with: sisisi ∈ ({∗}ω)M . The restriction on si indicates that it can only
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match strings of “*”, since TDFPN has no value matching. The resulting DFPN rules

are sequential. They can be evaluated sequentially by first reading the state input,

which is present and uniquely valued in each rule, then branching based on the value

σi to a chain of states that read the rule’s other inputs, one “*” token at a time.

This reduction, together with its counterpart in Section 2.4.3.5 proves the equiv-

alence of TDFPN with one rule per state and DFPN with sequential firing rules.

2.4.4 Multiple Enabled Firing Rules

The denotational semantics presented thus far (for DFPN and TDFPN) are limited to

having one rule enabled at a time. Multiple enabled rules are desired for expressive-

ness, compositionality, and closure under certain actor transformations. We extend

the denotational semantics to include multiple enabled rules.

2.4.4.1 Kahn Restriction

The continuity of a DFPN actor A = (f, R) relies on the restriction that no two

distinct firing rules rrr, r′r′r′ ∈ R be joinable (part (4) of the definition in Section 2.4.2).

That is, no two rules have a common extension. Considering the actor’s input to

be the common extension, this means that no two rules can appear on the input

simultaneously. Determinism is guaranteed, because there is never a question of which

rule to evaluate. We call this the Kahn restriction, since it is analogous to the Kahn-

MacQueen blocking read—it has the same problem of preventing compositionality

in the model. An actor representing the composition of two others actors must, in

general, be able to simultaneously match against the input of either actor, and this

requires joinable rules.

65



Chapter 2. Language and Theoretical Foundation

2.4.4.2 DFPN Restriction

To regain compositionality, Lee [Lee, 1997] relaxes the above restriction by allowing

two firing rules to match simultaneously, provided they do not interfere. That is, both

rules must fire, and the resulting output must be independent of which rule fired first.

Technically, the Kahn restriction is replaced by:

5. for any rrr, r′r′r′ ∈ R that are joinable, rrr u r′r′r′ = Λ and f(rrr).f(r′r′r′) = f(r′r′r′).f(rrr),

6. if Λ ∈ R then f(Λ) = Λ.

We call this the DFPN restriction. Recall that Λ is the tuple of empty sequences.

The restriction rrr u r′r′r′ = Λ means that any two joinable (simultaneously enabled)

rules must have no common prefix. If they had a common prefix, then firing one rule

would consume the prefix required by the second rule and thus prevent it from firing.

Forbidding a common prefix ensures that both rules can fire. The DFPN restriction

is not directly applicable to TDFPN due to state4. We formulate an alternate version

with state below.

2.4.4.3 Autmented DFPN Restriction

The DFPN restriction is not always efficient for parallel hardware implementations.

If firings represent time steps in an implementation, then firing two joinable rules in

sequence takes more time than firing both rules in tandem. Yet the DFPN restriction

prohibits combining two joinable rules into one. To be concrete, consider two inde-

pendent rules r1r1r1 = ([∗],⊥), r2r2r2 = (⊥, [∗]). Processing both inputs requires two firings,

even if both inputs are available at the same time. A more efficient implementation

4 The DFPN restriction cannot be directly applied to a TDFPN actor reduced to a DFPN actor.
In the reduction, every rule consumes a state token. Two joinable rules would have the same state
and thus have a common prefix, which is technically prohibited by the DFPN restriction. The state
is re-emitted in each firing, so in principle, every signature of the state could fire in turn. However,
this requires remaining in the same state and so is not very useful.
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might add a rule r12r12r12 = ([∗], [∗]) and a function case f(r12r12r12) = f(r1r1r1).f(r2r2r2) = f(r2r2r2).f(r1r1r1)

to process both inputs at once. This addition maintains the continuity of the pro-

cess, since the output is identical regardless of which rules fire when both inputs are

available. Nevertheless, it violates the DFPN restriction, since the common prefixes

r1r1r1 u r12r12r12 = r1r1r1 and r2r2r2 u r12r12r12 = r2r2r2 are non-empty.

To support tandem firing of joinable rules in hardware, we desire a more general

restriction on R and f . Call it the augmented DFPN restriction. Intuitively, we want

any collection R′ ⊆ R of joinable firing rules having non-empty meet uR′ to have

the property that, regardless of which rule is chosen for the first firing, the sequence

of subsequent firings will generate equivalent behavior. We limit the look-ahead by

requiring that the process generate the said equivalent behavior no later than the

consumption of the join tR′, regardless of which rules fire. Consider a maximal set

of joinable rules R′ ⊆ R with non-empty meet:

R′ =
{

r′r′r′ ∈ R | (tR′ exists) ∧ (uR′ 6= Λ) ∧ ¬(∃rrr ∈ R \R′ s.t. rrr t r′r′r′ exists)
}

(2.9)

Let QR′ be the set of all sequences of rules (sequences of sequences!) whose concate-

nation equals tR′:

QR′ = {q ∈ R′ω | • q = tR′} (2.10)

where •q is the concatenation of rules in sequence q. For any maximal R′, we require:

∃sss ∈ SN s.t. ∀q ∈ QR′ , •f(q) = sss (2.11)

where sss is the said equivalent behavior, and f(q) means the sequence formed by

applying f to every rule in sequence q. Note that the rules thus chained in QR′ need

not all be in R′, and in general cannot all be in R′ (the non-empty common prefix

uR′ 6= Λ means that the first firing of a rule from R′ consumes the prefix required
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to fire any of the other rules from R′, so the others cannot fire). The original DFPN

restriction continues to hold for pairs of joinable rules having empty meet r1r1r1ur2r2r2 = Λ.

The augmented restriction could subsume the original restriction if we remove “with

non-empty meet” (uR′ 6= Λ) from the definition of R′, but keeping the restrictions

separate might be more efficient for compiler analysis.

2.4.4.4 TDFPN Restriction

In a TDFPN process, state is hidden. Hence, when discussing equivalent behavior for

multiple enabled firing rules, it suffices to speak only of externally visible behavior.

Operationally, two sequences of firings have the same externally visible behavior if

they have identical consumption and production of data streams and identical final

state. The sequence of intermediate states is irrelevant. We use this concept to adapt

the augmented DFPN restriction for TDFPN.

We first develop new terminology to discuss sequences of firings. The notation

below is in the DFPN domain, with A = (f, R) being a DFPN actor reduced from

an equivalent TDFPN actor. Chaining a sequence of firing rules means firing them

in turn. Define two firing rules r1r1r1, r2r2r2 ∈ R to be chainable if a firing of r1r1r1 produces

the state required to fire r2r2r2, ı.e. if π0(f(r1r1r1)) = π0(r2r2r2). By extension, a sequence of

firing rules [ririri, ...] is chainable if π0(f(ririri)) = π0(ri+1ri+1ri+1) ∀i. The input associated with

chaining two rules r1r1r1, r2r2r2, is expressed by the chained input operator C:

r1r1r1Cr2r2r2 = r1r1r1.(⊥, π1..M(r2r2r2)) (2.12)

which concatenates the two rules’ data inputs and takes the initial state from r1r1r1.

Similarly, the output associated with chaining two rules r1r1r1, r2r2r2, is expressed by the
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chained output operator C̄:

r1r1r1C̄r2r2r2 = (⊥, π1..N(f(r1r1r1))).f(r2r2r2) (2.13)

which concatenates the two rules’ data outputs and takes the final state from f(r2r2r2).

Chained input/output is not the same as concatenated input/output, since the chain-

ing operators ignore intermediate state. C and C̄ are associative, so their application

to a sequence q of chainable rules is well defined: Cq, C̄q.

The TDFPN restriction for multiple enabled firing rules is now formulated. Con-

sider a TDFPN actor reduced to a DFPN actor A = (f, R). Let R′ ⊆ R be a maximal

set of joinable firing rules having non-empty meet uR′, as in Equation (2.9). Let QR′

be the set of all sequences of rules whose chaining equals tR′:

QR′ = {q ∈ R′ω | Cq = tR′} (2.14)

For any maximal R′, we require:

∃sss ∈ SN s.t. ∀q ∈ QR′ , C̄q = sss. (2.15)

This statement captures concisely that, whenever multiple firing rules in R′ are en-

abled, any chaining of rules that collectively consumes tR′ must produce the same

chained output sss, regardless of intermediate state. Note that the rules thus chained

in Q need not all be in R′, and in general cannot all be in R′. This restriction is

sufficient to guarantee determinacy of a TDFPN composition. Strictly speaking, it

does not guarantee determinacy of the reduced DFPN composition, where state is

exposed, and where different intermediate state implies multiple possible behaviors.

Nevertheless, the data streams are fully determined by inputs and initial state.

The TDFPN restriction for multiple enabled rules is useful in pipelined implemen-
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tations of operators. Consider a two-input actor that processes corresponding pairs of

inputs using a rule rrr = (σ, [∗], [∗]). Now consider pipelining the actor to process the

two inputs staggered by one firing. The pipeline must be able to flush when inputs

are unavailable, since trapping in-flight values in pipeline registers may deadlock the

composition. Thus, the pipelined implementation might use three states (pipeline fill,

stead state, flush) plus a feedback stream corresponding to pipeline register(s). Using

inputs (state, in1, in2, pipedata) and outputs (state, out, pipedata), the firing rules

and functions would be:

Pipeline fill: r1r1r1 = ([σ1], [∗],⊥,⊥) f(r1r1r1) = ([σ2],⊥, [p])

Steady state: r2r2r2 = ([σ2], [∗], [∗], [∗]) f(r2r2r2) = ([σ2], [o], [p
′])

Pipeline flush: r3r3r3 = ([σ2],⊥, [∗], [∗]) f(r3r3r3) = ([σ1], [o
′],⊥)

where p, p′, o, o′ are functions of the input. Steady state and pipeline flush use the same

state σ2 to denote that the flush is triggered by the presence (or rather, absence) of

data inputs, not by an iteration count or a termination value on the input. Rules r2r2r2, r3r3r3

have a non-empty common prefix, r2r2r2 u r3r3r3 = r3r3r3, which violates the DFPN restriction.

However, our choice of r2r2r2 = r1r1r1Cr3r3r3 and f(r2r2r2) = r1r1r1C̄r3r3r3 satisfies the TDFPN restriction

and maintains continuity of the associated Kahn process F .

2.4.4.5 Fairness

The denotational semantics above say nothing of fairness or priority among multi-

ple enabled rules. For instance, it is correct for an implementation of the pipelined

example above to never use its steady state rule r2r2r2, and instead to only use fill r1r1r1

and flush r3r3r3 in alternation. Our denotational semantics are formulated to guarantee

determinacy regardless of the choice and order among multiple enabled rules. We

leave that choice, and its consequences to performance, to the operational seman-

70



Chapter 2. Language and Theoretical Foundation

tics. The operational semantics may be tuned for performance or resources, but they

will retain determinism. In contrast, models such as CAL [Eker and Janneck, 2003]

permit explicit priorities among multiple enabled rules. Such priorities create timing

dependent behavior and thus destroy determinacy. They provide a useful, expres-

sive mechanism for the programmer, but they undermine a significant benefit of the

denotational semantics.

2.4.5 Adding Non-Determinism

Deterministic behaviors comprise only a limited subset of possible, desired behaviors

for real systems. For example, a system that is reactive in time may need to take

a different action depending on when an event occurs, such as skipping a lost frame

of video. Lee and Parks [Lee and Parks, 1995] note that non-determinism may be

added to Kahn process networks by any of five methods: (1) allowing processes to

test for input emptiness, (2) allowing processes to be internally non-determinate, (3)

allowing more than one process to produce tokens on a channel, (4) allowing more

than one process to consume tokens from a channel, and (5) allowing processes to

share variables. However, all these methods break the denotational semantics defined

above, by destroying continuity and/or preventing use of the fixed point theorem.

To deal with a real-time environment, it suffices to add non-determinism only

in the actors that interact with the environment. Thus, the core computation can

continue to be determinate and benefit from the denotational semantics. For example,

a source actor may sample the environment at regular intervals and produce a token

pair (value,presence) to denote whether the environment was ready. Such an actor

is internally non-determinate (method (2) above), but its downstream consumers

need not be. Alternatively, to avoid buffering non-present tokens, we may prefer

a demand-driven source actor with unbuffered output. The source actor could test
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its output stream and emit a (value,presence) pair only when the downstream actor

is ready to consume. Thus, the consumer receives a current sample whenever it is

ready, without having to wade through stale, buffered samples. This approach is

equivalent to extending Lee and Park’s list of non-deterministic methods with: (6)

allow processes to test for output fullness on channels with finite buffers. In general,

finite buffers may introduce deadlock—arguably a form of non-determinism, though

not a useful one. Nevertheless, introducing finite buffers only at primary inputs and

outputs, with a mechanism for dropping samples (combining (1), (2), (6), (7)), is

deadlock free.
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Synthesis Methodology for FPGA

Compiling a TDF program to hardware involves a large semantic gap between ab-

straction and physical implementation. For a given target, be it ASIC, FPGA, or pro-

grammable platform, the synthesis methodology must bind design decisions for every

aspect of the language and the specific program, with target-specific constraints and

optimizations. On a programmable platform, some decisions may already be bound

into custom resources, e.g. the stream transport. On an FPGA, however, nearly all

design decisions remain to be bound, including:

• Stream protocol

• Stream pipelining (for long interconnect)

• Queue implementation (for stream buffering)

• Queue capacities

• SFSM synthesis style

• Streaming memory control and allocation

• Primary I/O style

This chapter describes a complete synthesis methodology for mapping TDF to an

FPGA. We begin with an overview of the compilation flow in Section 3.1. Sections 3.2
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through 3.6 discuss the design decisions above and their respective implementations,

from the level of stream protocol to system synthesis. Section 3.7 discusses pipelining

of streams and processes. We defer the discussion of choosing queue capacities and

pipelining depths to Chapter 6 on optimization. In this chapter, we focus primarily

on hardware mechanisms and synthesis style.

3.1 Compilation Flow

To facilitate retargeting to different hardware, our compile flow uses the Verilog hard-

ware description language as an intermediate form. This form is then compiled to

a specific hardware target using conventional behavioral synthesis tools. The inter-

mediate behavioral Verilog uses no device-specific libraries and is portable to any

FPGA. However it uses idioms that infer particularly efficient structures on Xilinx

Virtex/Spartan FPGAs, e.g. SRL16. Our tool flow targeting Virtex/Spartan is shown

in Figure 3.1 and consists of three phases:

1. Compile TDF to Verilog. This step, using our custom compiler tdfc, includes

TDF language processing, optimizations, and translation to Verilog. It auto-

matically generates firmware for streams, stream buffers (queues), module firing

control, and the netlists composing them all.

2. Behavioral Synthesis. We use a commercial Verilog compiler, Synplify Pro 8.0

[Synplicity, 2005c], with synthesis features such as FSM compilation, resource

sharing, and retiming1. We specify a clock target of 200MHz, which the tool

tries to meet by automatically applying additional, low-level optimizations such

as logic replication.

1We use the following optimizations in Synplify Pro: FSM Explorer, FSM Compiler, Resource
Sharing, Retiming, Pipelining. Here, pipelining refers to retiming delays into the pipeline registers
of custom components such as multipliers and Block-RAMs.
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Compilation Tool Flow

tdfc

Synplify

Xilinx ISE

Application

Bits

Verilog

EDIF
(Unplaced LUTs, etc.)

Device Configuration

• Local optimization

• System optimization

• Queue sizing

• Pipeline extraction

• SFSM partitioning / merging

• Pipelining

• Generate flow ctl, streams, queues

• Behavioral Synthesis

• Retiming

• Slice packing

• Place and route

TDF

Figure 3.1: Tool flow targeting Xilinx Virtex/Spartan series FPGAs

3. Place and Route. We use a commercial tool suite, Xilinx ISE 6.3i [Xilinx, 2005b]

for PAR. To accurately measure the used chip area, we constrain PAR to use

the minimum feasible square area, rather than the entire chip. A scripted loop

tries a progressively larger area constraint until PAR succeeds.

The TDF compiler tdfc is responsible for optimization and translation to Verilog.

Its compiler passes are organized as follows:

1. Parse, Link, Type-Check. The TDF language front end.

2. Canonical Form. Transform away several language features that are mere syn-

tactic sugar, including:

• Infer and instantiate copy SFSMs for stream fanout,

• Remove inlined calls from SFSMs by exlining (instantiate an external,

stream-connected SFSM) or inlining (copy callee into caller),
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• Remove array accesses from SFSMs by exlining (instantiate an external,

stream-connected memory),

• Optionally expand states into basic blocks, for analysis.

3. Flatten Hierarchy. Form a single level composition of SFSMs and streaming

memories.

4. Bind Parameters. Propagate values of param bind-once parameters into SFSMs.

5. Local Optimization. Perform traditional compiler optimizations on SFSMs such

as constant folding, constant propagation, and unreachable state removal. Ex-

haustive local optimization is not necessary here, since the Verilog compiler will

do it later.

6. System Optimization. Perform system-level optimizations that are unique to

streaming systems, including:

• Queue sizing

• Pipeline extraction (Decompose SFSMs into pipelines of SFSMs)

• Granularity transformations (SFSM partitioning and merging)

• SFSM pipelining

• Stream pipelining

7. Code Generation. Emit TDF, C++ for simulation, or Verilog.

The remainder of this chapter deals with Verilog code generation from TDF and

pipelining. Additional system optimization is discussed in Chapter 6, including queue

sizing, SFSM merging, and SFSM partitioning.
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Wire Protocol for Streams

! D = Data,    V = Valid,    B = Backpressure

! Synchronous transaction protocol

• Producer asserts V when D ready,  Consumer deasserts B when ready

• Transaction commits if (¬B " V) at clock edge

• Encode EOS E as extra D bit    (out of band, easy to enqueue)

Producer Consumer

D  (Data),    E  (EOS)

V  (Valid)

B  (Backpressure)

D

V

B

Clk

Figure 3.2: Stream protocol

3.2 Stream Protocol

Our stream protocol is a synchronous handshaking protocol, chosen for its simplicity

and ease of pipelining and queuing. It is diagrammed in Figure 3.2. The stream

producer emits bussed data D and a data presence bit V (“valid”). The stream

consumer emits a (low-active) back-pressure bit B. V and ¬B serve as “ready” signals

for cycle-by-cycle flow control, and both must be asserted during a rising clock edge to

commit a transaction. That is, a single token with value D is transferred at the clock

edge if V ∧¬B. The use of single cycle transactions is intended to support a synthesis

style that evaluates one TDF state per cycle. In addition to data, D includes a bit

E to represent an out-of-band end-of-stream value. This representation allows end-

of-stream to be transported and queued like any data token. Stream queueing and

pipelining are described below, in Sections 3.4 and 3.7.

3.3 SFSM Synthesis

Our SFSM synthesis style evaluates one SFSM state per machine cycle. It does so by

directly translating each SFSM state into a behavioral Verilog FSM state, with code

to control that state’s firing, stream transactions, and datapath action.

Each SFSM state begins with a firing guard to wait for readiness of the streams
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consumed or produced in that state. The guard combines incoming flow control

bits from those streams, namely input valid, input end-of-stream, and output back-

pressure. So long as the guard is false, the SFSM emits non-ready outgoing flow

control and waits in the same state. When the guard becomes true, the SFSM emits

ready outgoing flow control, to commit the stream transactions, and evaluates its state

action. Figure 3.3 shows a sample SFSM, and Figure 3.4 shows the corresponding

Verilog code for its firing control. The firing guard is implemented using a Veriog “if”

statement. If the present state has more than one firing rule, then the implementation

needs a separate guard for each rule, plus a priority mechanism to choose among

multiple enabled guards. This can be implemented in Verilog by generalizing the “if”

for one guard into an “if-then-else” for a sequence of guards.

One consequence of this firing control style is that, since an SFSM always waits

for incoming flow control before asserting outgoing flow control, connecting two SF-

SMs directly would cause deadlock. Instead, SFSMs must be connected through

intermediate elements that assert flow control first, namely stream queues.

An SFSM is synthesized in two parts, (1) an FSM module for firing control, and

(2) a datapath module for state actions. This division allows each part to be compiled

and characterized separately to study of the costs of stream support. Figure 3.5 shows

a schematic for a typical SFSM, showing the separation of FSM and datapath. Note

that stream flow control and end-of-stream signals (V , B, E) are handled entirely in

the FSM for firing control, while stream data signals (D) are handled entirely in the

datapath. Thus, the sample code from Figure 3.4 belongs strictly in the FSM module.

The FSM controls the datapath by sending its present state and an indication of which

signature was chosen for firing. Those signals in turn control multiplexers in the

datapath that choose stream output values and new data register values. If-then-else

conditions are evaluated in the datapath, and their boolean values are sent back to the

FSM for use in determining next state. With this structure, most of the statements
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select (input boolean s, input unsigned[8] t,
input unsigned[8] f, output unsigned[8] o)

{
state S (s) : if (s) goto T; else goto F;
state T (t) : o=t; goto S;
state F (f) : o=f; goto S;

}

Figure 3.3: Example SFSM for controlled merging of two data streams (canonical select
actor from Boolean Controlled Dataflow)

always @* begin
t_b=1; f_b=1; o_v=0; o_e=0;
case (state_reg)
state_S: ...
state_T: ...
state_F: begin
if (f_v && !f_e && !o_b) begin

f_b=0; o_v=1; o_e=0;
...

end
end

endcase // case (state_reg)
end // always @*

Figure 3.4: Verilog firing control for the SFSM of Figure 3.3, showing state F which
consumes from stream f and produces to stream o. Suffixes v, e, b refer to the valid,
end-of-stream, and (low active) back-pressure bits of each stream.
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in an SFSM action can be translated directly to corresponding Verilog statements in

the datapath and/or FSM, including if and nested statement blocks. TDF goto,

which denotes an immediate control branch, is translated into a predication of the

state action’s remaining statements.

1/6/05 1

Control

Data registers

Stream I/O

Datapath

For State 1

Datapath

For State 2

FSM

V E DB

V E DB

Datapath

Figure 3.5: SFSM synthesis as FSM and datapath

3.4 Queue Implementation

Each stream must be buffered, using a queue, for purposes of correctness and per-

formance. We will separate the issue of queue implementation from queue capacity,

though clearly both are important. The choice of queue capacity for each stream is

treated in Chapter 5. A queue implementation must consider the following design
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issues:

1. Queues must temporally align data tuples that reach their destination at different

times. This is handled implicitly by stream flow control and firing guards.

2. Queue flow control must not induce deadlock.

Our chosen style of SFSM firing control (Section 3.3) makes SFSMs wait for

incoming flow control before firing and asserting outgoing flow control. To avoid

deadlock, queues connecting SFSMs should assert their outgoing flow control

unconditionally, or in some other way that avoids flow-control feedback loop.

3. Queues should not bottleneck system throughput.

A queue should be able to consume and produce a token at every clock cycle,

to match full throughput SFSMs. Also, a queue should have minimum pipeline

delay from input to output, since adding pipeline delay to stream feedback loops

may degrade system throughput. For this reason, fixed-latency delay lines are

in general unacceptable as queues.

4. Queues should not bottleneck system clock rate.

A queue should have a high internal clock rate and low input/output laten-

cies. Also, a queue should have no combinational path between inputs and

outputs, since such a path would would incur cumulative combinational delay

from producer, queue, consumer, and interconnect. Instead, a queue should

combinationally decouple the producer and consumer.

Each of these features requires area and delay, and some features are in conflict. Thus,

a design is best served by having different kinds of queues for different circumstances.

In some cases, it is appropriate to cascade several queues on one stream to serve mul-

tiple purposes. We present three kinds of queues for Xilinx Virtex/Spartan FPGAs,

based on an enabled register, a shift register, and embedded memory.
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3.4.1 Enabled Register Queue

The simplest and smallest queue is an enabled register, as shown in Figure 3.6. Such

a queue can store one token, and a cascade thereof can store more. Data D, end-

of-stream E, and valid V are simply registered, with the V register serving as a

full/empty state bit. The registers are enabled in every circumstance except when

the queue is full and its downstream is not ready, in which case the queue and its

upstream must stall. Consequently, flow control is simply an AND gate: iB = oV ∧oB.

1/6/05 Eylon Caspi – DSA Retreat 2005 1

Enabled Register Queue

iD,EiViB

oD,EoVoB

iD,E iV iB

oD,E oV oB

en en

Figure 3.6: Enabled register queue with capacity one

For a single stage, this queue is both small and fast, needing only an AND gate

and (w+2) registers for w bit data. If those registers are packed with other logic in an

FPGA cell, the queue may be nearly free. However, this queue has a combinational

feed-through of back-pressure, from Bo to Bi, violating queue design issue 4 above.

That feed-through may slow the system clock rate if it spans multiple connected

SFSMs, multiple enabled register stages, or long distances on chip. Consequently the

enabled register queue is best suited for single-stage connection of small SFSMs.

If enabled register queues are used to connect SFSMs in a streaming feedback

loop, the feed-through of back-pressure will create a combinational feedback loop,
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violating queue design issue 2. This loop is free of race conditions and will behave

deterministically. However, it will deadlock if all queues become simultaneously full.

Thus, streaming feedback loops should include at least one queue of a different kind

with no feed-through.

3.4.2 Shift Register Queue

Xilinx Virtex/Spartan series FPGAs have an SRL16 mode which implements a shift

register of depth up to 16 in just one 4-LUT cell per bit of data. This mode provides

a basis for an efficient queue of depth up to 16, or deeper by chaining shift registers.

Figure 3.7 shows schematics for such a queue. The queue uses a shift register for data

storage, shifting data in at the front and out at a dynamic address corresponding to

the queue occupancy. Fullness and emptiness are evaluated by comparing that address

to queue bounds (with an offset). Flow control is handled by a state machine. For

higher performance, the queue is enhanced with output registers for data, valid, and

back-pressure, and with pre-computation of the next cycle’s fullness and emptiness.

We have implemented such a queue in behavioral Verilog, fully parameterized for

depth d and bit width w, using shift registers that infer SRL16s. Figure 3.8 shows

the implementation speed and area for various parameters, pre-PAR, on Virtex-II

XC2VP70 -7. The implementation is efficient, near or above 200MHz for all depths

and widths up to 128. Thus, queue speed will seldom be the critical component of

a streaming system. The SRL16 area is (w + 1)dd/16e 4-LUT cells. For shallow

depths, total queue area is typically 2-4 times the SRL area (e.g. a depth-16 queue

for 16-bit data is 57 4-LUT cells, 17 of which are SRLs). For large depths, control

structures are amortized, and total queue area becomes asymptotic to the SRL area

(1/16 4-LUT cells per bit). Depth two is a special case where much of the queue

structure is removed by partial evaluation, including the SRL16 being converted into
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Figure 3.7: Shift register queue for stream buffering: (top) basic, (bottom) enhanced with
registered output and pre-computation of the next cycle’s fullness and emptiness.
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(a)

(b)

(c)

Figure 3.8: Performance of shift register queue, pre-PAR, on XC2VP70: (a) Speed,
(b) Area, (c) Area per bit of storage
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registers (e.g. a depth-2 queue for 16-bit data is 37 4-LUT cells).

It is useful to note that this shift register queue requires a minimum capacity of two

to operate at full throughput (design issue 3). To avoid combinational feed-through

of flow control signals (design issues 2 and 4), the queue disallows consuming when

full. Consuming when full requires simultaneously producing, which would require

conditioning input-backpressure on output back-pressure and creating a feed-through.

A queue of unit capacity is always either empty or full, so under these conventions,

it could never simultaneously consume and produce. Instead, it would ping-pong

between consuming when empty and producing when full, achieving at most half

throughput. A queue of capacity two has an intermediate state, neither empty nor

full, that can operate at full throughput. Thus, a queue that simultaneously satisfies

design issues 2, 3, and 4 must have a minimum capacity of two.

3.4.3 Block RAM Queue

Xilinx Virtex/Spartan series FPGAs feature embedded memory, termed Block Se-

lectRAM or simply Block RAM, which provides a basis for efficient, large queues.

Virtex 4 FPGAs further provide custom FIFO controllers for Block RAM based

queues. Block RAM queues have asymptotically higher storage density than SRL

based queues, which are limited to 16 bits per 4-LUT cell. That density advantage

would be realized at high queue depths, probably at hundreds of elements or above.

We presently do not implement Block RAM queues.

3.5 Streaming Memories

Memory blocks can be incorporated into a streaming system by accessing them

through streams. This purpose is served by a family of TDF segment operators,
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described in Section 2.3.3.4 and more fully in [Caspi, 2005]. A segment operator

abstracts the type and timing of a memory block behind a streaming interface. The

interface is tuned for one of several possible access modes (sequential, random access,

etc.) and may include an automatic address generator. A complete synthesis sys-

tem would provide separate segment operator implementations for every access mode

and memory type, including LUT-based RAM, Block RAM, and off-chip memory.

We presently do not implement segment operators on FPGAs. The tdfc Verilog

back-end emits them as black boxes.

3.6 System Composition

We synthesize a system as a composition of stream-connected pages, where a page

contains:

• One or more SFSMs,

• An input queue for each incoming stream,

• Pipelining for each outgoing stream (described below in Section 3.7),

• An internal queue for each internal stream, (if the page contains multiple

SFSMs).

Figure 3.9 shows such a page. In the simple case, a page contains only one SFSM and

exists merely to properly associate queues and pipelining with streams and SFSMs.

In the general case, a page refers to a physically localized cluster of SFSMs, where

internal queues may be simpler and smaller than input queues, because they represent

short-distance communication. For instance, internal queues might be enabled regis-

ters, while input queues might be SRL16 or Block RAM based. This notion of a page

is also useful for modeling and targeting a paged architecture, where SFSMs must fit

into fixed size partitions of reconfigurable fabric termed pages. An architectural page
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Figure 3.9: A sample page containing two SFSMs

may include custom resources for streams and queues. For example, in SCORE [Caspi

et al., 2000a], page input queues are implemented in custom resources, while page

internal queues are implemented in reconfigurable fabric on the page. As such, our

synthesis methodology for commercial FPGAs can be reused for paged architectures

and for studies of best page size.

A complete streaming system is a composition of pages and streaming memories.

Our synthesis methodology allows compilation of the entire system as well as separate

compilation of pages and page contents (queues and SFSMs). This separation provides

a means to characterize component costs and the potential benefit of introducing

custom resources for some components.
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3.7 Stream Enabled Pipelining

Pipelining is a general approach for achieving higher throughput by adding registers

to break long combinational paths and increase clock rate. Adding registers to a

circuit changes its sequential behavior. Hence, pipelining also involves modifying the

circuit to recover an equivalent, correct behavior (e.g. control changes). Pipelining a

single, performance critical component often requires modifying external components

connected to it, to account for modified latencies and throughputs in the communica-

tion pattern. That modification may be very simple, e.g. a feed-forward component

pipelined to depth N produces correct results N cycles later. In many cases, however,

the required modification is complicated and requires multiple layers of correction.

A notorious example is the pipelining of function units in a microprocessor. There,

correctness requires significant external control for hazard detection, to match the

timing of function inputs and outputs. Furthermore, achieving full throughput in a

pipelined function unit requires issuing an instruction at every possible clock cycle,

which in turn requires modification of other subsystems such as branch prediction

and load/store units.

Streaming systems, and our particular synthesis style for them, support a simpler,

more modular approach to pipelining. First, pipelining can be done independently

on individual components (processes) without violating system correctness, since the

underlying process network is naturally robust to changes in communication latency

and throughput. Furthermore, it is possible to pipeline the streams rather than

the processes, and then to retime registers into the processes. Such an approach can

pipeline a process, to a limited extent, without rewriting its RTL or behavioral source

implementation. These properties make the design and optimization of streaming

systems more modular and easier to implement.

The primary requirement for pipelining a streaming system is that the pipeline
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stages support bubbling. A pipeline stage added inside a process, which stalls together

with that process, may hold up data in-flight and subsequently deadlock a system. For

correctness, an added pipeline stage must pass data through, as if it were firing as an

independent process2. It must also be initialized to contain a bubble, i.e. no valid data,

and to pass bubbles through like data. Any bubbles introduced by pipelining would

propagate naturally through streams and processes, even around stream feedback

loops, yielding a graceful degradation of throughput.

In the remainder of this section, we discuss four automated approaches to pipelin-

ing a streaming system: (1) interconnect pipelining, (2) interconnect relaying, (3)

logic pipelining and retiming, and (4) logic relaying and retiming. These approaches

will be introduced in order of conceptual complexity, simplest first. Each approach

adds pipeline delay directly to streams, requiring no modification of process imple-

mentation. In a feed-forward stream network, the added pipeline delay is harmless

to system throughput. However, in a feed-back stream network, the added pipeline

delay may reduce system throughput in tokens-per-cycle. For this reason, pipelining

around feedback loops is best done in conjunction with a system-level performance

analysis. We propose such an analysis in Chapter 5.

3.7.1 Interconnect Relaying

A stream spanning a long distance on chip may be pipelined by relaying its signal

through small, depth-2 queues, as in Figure 3.10(a). An automatic placer may then

place those queues as necessary to avoid long, critically slow wires. We dub these

queues relay stations, borrowing the name from latency insensitive design [Carloni et

al., 2003], which uses a similar approach. Relay stations should have no combina-

2 A bubbling pipeline stage need not be implemented with its own firing control—it merely needs
to appear that way, as observed at the output of the pipelined process. Sections 3.7.3 and 3.7.4
discuss two implementations of bubbling pipelining that do not add firing control to each pipeline
stage.
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tional feed-through of signals. Hence, the SRL queue introduced in Section 3.4.2 is

an appropriate implementation choice. We note that a depth-2 queue is specifically

required, because (1) pipelining using D flip-flops would introduce error in flow con-

trol, and (2) a depth-1 queue with full throughput and no combinational feed-through

cannot be constructed for our stream protocol.

3.7.2 Interconnect Pipelining

A stream spanning a long distance on-chip may be directly pipelined using D flip-flips,

as in Figure 3.10(b). An automatic placer may then place the registers as necessary to

avoid long, critically slow wires. To correct for the staleness of pipelined flow control

signals, the stream’s queue must be placed downstream of the pipeline registers and

be modified to avoid overflow. Specifically, with N pipeline stages, and consequently a

2N -cycle round-trip staleness of flow control, the queue must signal fullness whenever

it has 2N or fewer empty slots. In essence, the queue must reserve a capacity equal to

the round trip pipeline delay. A shift register queue with reservation is only slightly

more complicated than the original queue from Section 3.4.2, requiring one additional

address comparator. Furthermore, the queue must have a depth of at least 2N + 1

to avoid deadlock, and at least 2N + 2 to permit full throughput.

Interconnect pipelining is not directly supported in most commercial FPGAs,

including the Xilinx Virtex/Spartan series. Those devices have no dedicated inter-

connect registers. Instead, registers exist as an integral part of logic cells, and the

entire cell is moved during placement. Reallocation of registers during or after place-

ment might provide additional flexibility for breaking long distance path on these

architectures. Several approaches have been proposed in the literature for perform-

ing retiming and register reallocation after or during placement in an RTL tool flow,

pertaining to registered interconnect [Tsu et al., 1999] [Singh and Brown, 2001] and
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Figure 3.10: Stream enabled pipelining: (a) interconnect relaying, (b) interconnect pipelin-
ing, (c) logic pipelining and retiming, (d) logic relaying and retiming backward, (e) logic
relaying and retiming forward
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non-registered interconnect [Weaver et al., 2003] [Singh and Brown, 2002]. However,

those techniques are available commercially at the time of this writing.

Stream based interconnect pipelining is simpler by design. Pipelining of arbitrary

depth can be added to a stream without affecting correctness and without resorting

to c-slowing (which is required in [Weaver et al., 2003]). Our basic approach applies

stream pipelining before placement and uses a conventional, commercial tool flow

thereafter. For improved results, stream pipelining can be applied after placement,

to match the actual interconnect delay. This will require post-placement register

allocation and post-placement specialization of the reservation parameter in queues

(e.g. by modifying a register initial value in the placed configuration). In Chapter 5,

we propose a way to integrate pipeline depth selection with placement, extending the

methodology of [Singh and Brown, 2002] for streams.

Stream based interconnect pipelining incurs a particular, preventable area over-

head on Xilinx Virtex/Spartan FPGAs using commercial tool flows. Since the unit

of placement is a slice of two 4-LUT cells, a pipeline register that is mobile during

placement must consume an entire slice. Consequently, interconnect pipelining be-

yond one level deep requires as much area as full interconnect relaying (at one level

deep, the register is packed with the stream producer’s logic and is effectively free).

For example, with 16-bit data, a depth-2 SRL queue for relaying is 37 4-LUT cells,

whereas a mobile pipeline stage is 38 4-LUT cells, with no area advantage. The

area overhead of mobile pipelining slices could be avoided if pipeline registers were

allocated only after placement, where space permits, as in [Weaver et al., 2003].
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3.7.3 Logic Pipelining and Retiming

An SFSM’s datapath may be automatically pipelined by adding pipeline registers to

one or more output streams and retiming them backwards into the datapath, as in

Figure 3.10(c). Only the forward stream signals D, E, V need to be pipelined, not the

back-pressure B. As with interconnect pipelining, staleness of pipelined flow control

signals must be handled by placing a modified queue downstream of the pipeline

registers, reserving a capacity equal to the round-trip pipeline delay. Specifically, with

N pipeline stages, and consequently an N -cycle round-trip staleness of flow control,

the queue must signal fullness whenever it has N or fewer empty slots. Note that N -

deep logic pipelining and M -deep interconnect pipelining may be used together with a

downstream queue that reserves N +2M slots. A shift register queue with reservation

is only slightly more complicated than the original queue from Section 3.4.2, requiring

one additional address comparator. Furthermore, the queue must have a depth of at

least N +2M +1 to avoid deadlock, and at least N +2M +2 to permit full throughput.

Stream based logic pipelining is useful but limited. It works best on perfectly

pipelinable computations, such as a finite impulse response (FIR) filter or discrete

cosine transform (DCT), where a single-state FSM exists solely for stream flow control

and is otherwise independent of the datapath. Stream based logic pipelining has

partial benefit whenever the datapath has non-cyclic components at its outputs or

inputs. In that case, pipeline registers can be retimed back as far as a feedback

cycle, or entirely past it, but not into it. This retiming based form of pipelining

is strictly less powerful than loop scheduling techniques such as loop unrolling and

software pipelining, since they deal with feedback loops directly. It is also possible for

behavioral synthesis to introduce new feedback loops which obstruct retiming based

pipelining, for instance via resource sharing.
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3.7.4 Logic Relaying and Retiming

An SFSM’s datapath may be automatically pipelined by adding a small queue to one

or more of its streams and retiming the queue’s registers into the the datapath, as

in Figures 3.10(d), 3.10(e). The enabled register queue from Section 3.4.1 is partic-

ularly useful for this purpose, since it may be cascaded to provide arbitrarily many,

retimable, enabled registers on the stream data line D. The AND gate of each en-

abled register queue would also be cascaded, slightly increasing flow control latency.

There are both advantages and disadvantages to using logic relaying with enabled

registers versus logic pipelining with D flip-flops. The comparison is discussed below

and evaluated by experiment in Chapter 4.

Logic pipelining adds registers only at the SFSM outputs, whereas logic relaying

adds registers at either the outputs (Figure 3.10(d)) or the inputs (Figure 3.10(e)).

Retiming forward from the inputs may provide different optimization opportunities

than retiming backward from the outputs, due to feedback loops within the SFSM,

and due to the idiosyncratic interaction between retiming and other optimizations in

behavioral synthesis and technology mapping. Even considering only backward re-

timing, such idiosyncracies sometimes make it possible for enabled registers to retime

better than D flip flops (this is discussed further in Chapter 4).

The use of enabled registers rather than D flip-flops incurs an area disadvantage,

since retiming enabled registers may leave a residue of a register-multiplexer cycle.

Nevertheless, logic relaying also has an area advantage, since it does not require

modifying the original stream queue. Logic pipelining, on the other hand, requires

modifying the original stream queue with reservation, which requires a comparator

and potentially more capacity. The resulting area overhead may be large for an

originally shallow queue.
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Characterization for FPGA

In this chapter, we apply the synthesis methodology of Chapter 3 to compile seven

multimedia applications to a commercial FPGA, the Xilinx Virtex-II Pro XC2VP70.

From this case study, we seek to determine the merit and overheads of our streaming

design methodology, including:

• What is the attainable application performance?

• What is the overhead for supporting streaming, e.g. the added area for stream

queues?

• What is the speedup and area overhead for stream-enabled pipelining?

We gain additional insight by separately compiling and analyzing the components of

applications, including individual pages, SFSMs, FSMs, and datapaths.

The chapter is organized as follows. Section 4.1 discusses the experimental setup,

including the choice of chip, place-and-route options, and stream implementation pa-

rameters. Section 4.2 discusses our suite of seven multimedia applications. The next

three sections present results for compiling the applications with increasing levels of

optimization: Section 4.3 without pipelining, Section 4.4 with stream-enabled logic

pipelining, and Section 4.4 with stream-enabled interconnect pipelining. Finally, Sec-
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tion 4.6 provides a summary of results.

4.1 Experimental Setup

For the studies in this chapter, we target the Xilinx Virtex-II Pro XC2VP70 FPGA,

speed grade 7. Virtex-II Pro is a high performance device family, fabricated in 130nm,

featuring logic speeds up to 400MHz, multi-standard chip I/O, integrated on-chip

memory (Block Select RAM), and hard macros such as 18x18 bit multipliers. The

XC2VP70, having 74K 4-LUT cells, is a medium-large device capable of mapping

each of our applications on a single chip. It is not the largest device in its family,

but it is the largest one available with the family’s maximum speed grade of 7 (speed

grade is Xilinx’s term for binning devices by clock rate). We do not focus on the

newer, 90nm, Virtex 4 family, primarily because its software tools are less mature.

Our approach to stream-enabled pipelining relies heavily on retiming in commercial

tools, which at the time of this writing, provided limited benefit on Virtex 4.

The methodology of Chapter 3 provides multiple implementation options for

streams and does not prescribe how to choose among them. That choice is a matter

of optimization. Before we can flesh out a complete optimization methodology, we

need a design space exploration to compare the merit and costs of various imple-

mentation options, including queue types and pipelining depths. Consequently, the

studies in this chapter are organized as a design space exploration for a subset of

implementation options. In most cases, we uniformly apply a single implementation

choice to every stream in an application. For instance, in every study, we choose a

stream’s main queue to be the enhanced, shift-register queue from Section 3.4.2 with

depth 16. Smaller queue depths are possible, if the user or an automated analysis

indicate that those depths do not introduce deadlock (such an analysis is discussed in

Chapter 6). Anecdotally, we know that depth 16 is sufficient for every stream in our
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seven multimedia applications, except for eight feedback streams that hold a raster

image row.

For the sake of realism and believability, we report mapping results after place-

and-route (PAR). It is possible, and often instructive, to consider estimates of clock

rate and area at earlier stages of compilation, such as after behavioral synthesis, or

after slice packing. Nevertheless, PAR captures the additional delay of interconnect,

which is increasingly important in large devices. We follow the tool flow of Figure 3.1,

using Xilinx ISE 6.3i for PAR. The primary inputs and outputs of each compiled

component are left as raw streams (valid, back-pressure, and data) and are allowed

to float freely during PAR.

To capture accurate area estimates, we constrain placement to use a minimum

size, square floorplan. Without such a constraint, the placer is free to use the entire

device, and it typically consumes many slices for their routing resources without

using their logic. An area constraint forces the placer to consider a realistically small

area, as if on a smaller device. The result is typically somewhat slower than with

unconstrained placement, since there is less freedom to bring connected components

as close as possible. Unless otherwise specified, all areas reported in this chapter are

floorplan areas, which include any unused resources within the floorplan.

We use a floorplan that is 20% larger than the area required for maximum slice

packing (as reported by map -c 1). In the expanded floorplan, the slice packer is

allowed to target the entire area, and it is not required to apply maximum slice

packing. The expansion figure of 20% was chosen as a balance between aleviating

PAR effects and bloating the area. The Xilinx Development System Reference Guide

[Xilinx, 2003b] (p. 151) warns that using maximally packed slices in production leads

to long PAR times and poor clock rates. Our methodology encountered precisely

those effects when using a square area constraint with 0% or 10% expansion over the

area for maximally packed slices. Using 30% or greater expansion, we observed little
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added benefit for PAR times or clock rates.

4.2 Applications

As a case study for our streaming design methodology, we use suite of seven multi-

media applications written in TDF1. The applications range in size from a simple,

linear filter to a standards-compliant MPEG encoder having hundreds of streams.

Individual SFSMs represent computational kernels such as a 1-dimensional discrete

cosine transform (DCT), a run length coder, or a Huffman coder. Most SFSMs re-

quire little control and have few states. The largest state machine belongs to an 8x8

matrix transpose, with 21 states. The seven applications are:

IIR (Figure 4.1). An infinite impulse response (IIR) filter for 16-bit data. An IIR

filter normally has tight feedback loops that limit throughput. This implemen-

tation achieves high throughput by decomposing the filter into a cascade of IIR

stages having loose feedback (y[t] = x[t] + Ay[t− 4] + By[t− 8]) and compen-

sating finite impulse response (FIR) stages. The loose feedback loops can be

retimed to a higher clock rate than the original, direct implementation, since

they have a greater ratio of registers to combinational delay. The remaining

feed-forward structure can be easily pipelined.

JPEG Decode (Figure 4.2). A JPEG image decoder for 8-bit, gray-scale images.

The heart of this decoder is a processing pipeline for Huffman and run-length

decoding, dequantizing, zig-zag scan, and 2D inverse DCT. The two-dimensional

IDCT is implemented by cascading two one-dimensional IDCTs (Loeffler-Ligtenberg-

Moschytz [Loeffler et al., 1989]) separated by an 8x8 matrix transpose, using

banks of 8 parallel streams.

1Special thanks to Joe Yeh for authoring the seven TDF applications used in this chapter.
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JPEG Encode (Figure 4.3). A JPEG image encoder for 8-bit, gray-scale images.

The heart of this encoder is a processing pipeline for 2D DCT, zig-zag scan,

quantizing, run-length coding, and Huffman coding. The two-dimensional DCT

is implemented by cascading two one-dimensional DCTs (Loeffler-Ligtenberg-

Moschytz [Loeffler et al., 1989]) separated by an 8x8 matrix transpose, using

banks of 8 parallel streams.

MPEG Encode IP (Figure 4.4). A standards-compliant, MPEG-1 video encoder

using a fixed frame pattern {IPP}. The input is a sequence of uncompressed

YUV color frames, raster-scanned into separate luminance and chrominance

streams. The heart of this encoder is a processing pipeline for motion esti-

mation, 2D DCT, zig-zag scan, quantization, run-length coding, and Huffman

coding. The motion estimation engine uses streams as wide as 64 bits to rep-

resent a column of eight pixels in one token. The two-dimensional DCT is

implemented as for JPEG above.

MPEG Encode IPB (Figure 4.4). A standards-compliant, MPEG-1 video encoder

using a fixed frame pattern {IBBPBB}. The encoder structure is similar to

MPEG Encode IP, but it includes a second motion estimation engine to handle

bidirectional (B) frames. A more detailed description of the encoder can be

found in [Yeh, 2005].

Wavelet Encode (Figure 4.6). A wavelet image encoder for 8-bit, gray-scale im-

ages. The encoder uses three stages of filtering and sub-sampling to split the

image into seven frequency components, which are emitted to separate output

streams. Each stage applies a low-pass filter, whose output is encoded through

quantization, run-length coding, and Huffman coding, as well as a high-pass

filter, whose output is passed to the next stage. Each two-dimensional image

filter is implemented as a cascade of two one-dimensional filters.
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Wavelet Decode (Figure 4.7). A wavelet image decoder for 8-bit, gray-scale images.

The decoder structure is essentially the same as the encoder structure, only in

reverse. The decoder uses three stages of scaling and compositing to recombine

seven frequency components, from separate input streams, into a raster-scanned

image stream. Inputs are decoded through Huffman decoding, run-length de-

coding, and dequantizing, and are then recombined. Each two-dimensional

recombination stage is implemented as a cascade of two one-dimensional stages.

Figures 4.1- 4.7 show the stream-connected page graphs of every application, and

Table 4.1 summarizes structural statistics of those graphs. In the figures, arcs repre-

sent streams; diamond nodes terminate primary input/output streams; and rectangu-

lar nodes represent pages, each containing an SFSM or a segment operator. Strongly

connected components are shown with a red outline. The graphs depict a form ready

for direct mapping to hardware, i.e. after the TDF source is processed for canoni-

calization, flattening, and parameter binding. Consequently, these flat graphs do not

show the original hierarchy of the TDF compositional operators.

A salient feature of our applications, and of streaming applications in general,

is that streams partition the application into a mostly feed-forward structure. Ta-

ble 4.1 indicates that two of our seven applications have no stream feedback, and

three have feedback only between one SFSM and one segment. The largest strongly

connected component (SCC) contains only three SFSMs and one segment. Feedback

certainly exists within SFSMs, but it is largely confined to that level. The latency of

feedback loops typically determines application performance. Consequently, for high

performance, feedback loops cannot be pipelined arbitrarily deep, and they must be

kept physically localized during partition, place, and route. A mostly feed-forward

streaming topology makes optimization easier by confining feedback loops to a small

granularity—mostly inside SFSMs—where loops can be localized and not interfere
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with system-level placement. The majority of streams, being feed-forward, can then

be readily pipelined, as in Section 3.7.

Streams Streams Largest SCC
Application SFSMs Segments In Local Out in Feedback (SFSMs+Segs)
IIR 8 0 1 7 1 0 0+0
JPEG Decode 9 1 1 41 8 7 3+1
JPEG Encode 11 4 8 42 1 0 0+0
MPEG Encode IP 80 16 6 231 1 4 1+1
MPEG Encode IPB 114 17 3 313 1 8 1+1
Wavelet Encode 30 6 1 50 7 9 2+0
Wavelet Decode 27 6 7 49 1 23 1+1
Total 279 50 27 733 20 51 3+1

Table 4.1: Application structural statistics
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Figure 4.1: Page graph for application “IIR”
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Figure 4.4: Page graph for application “MPEG Encode IP”
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Figure 4.5: Page graph for application “MPEG Encode IPB”

105



Chapter 4. Characterization for FPGA

compWaveHuff_0

Quant_DC_73

DCs

__HuffMachine_85

AC2

segment_r_1

__Quant_ZLE_75

repWave_63

VWave_62

InWave_61

__HuffMachine_82

AC1

segment_r_0

__Quant_ZLE_74

__HuffMachine_88

AC3

segment_r_2

__Quant_ZLE_76

repWave_72

VWave_71

InWave_70

LiftWaveH_54

__HuffMachine_94

AC5

segment_r_4

__Quant_ZLE_78

repWave_44

VWave_43

InWave_42

__HuffMachine_91

AC4

segment_r_3

__Quant_ZLE_77

__HuffMachine_97

AC6

segment_r_5

__Quant_ZLE_79

repWave_53

VWave_52

InWave_51

LiftWaveH_35

VWave_34

InWave_33

LiftWaveHD_27

a
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4.3 Baseline Results

In this section, we present the results of mapping applications to the XC2VP70 FPGA,

using the methodology of Chapter 3, with no automatic pipelining. These results

represent a baseline case of no stream-based optimization.

4.3.1 Compiling Applications

Table 4.2 shows the baseline area and clock rate for our seven multimedia applications,

post-PAR. Application floorplan areas range from about 2000 4-LUT cells for IIR to

about 66,000 4-LUT cells for MPEG Encode IPB. Application speeds range from

46.9MHz for MPEG Encode IP up to 166.3MHz for IIR. Application speed tends to

be limited by one critical page. Pipelining that page—the subject of Section 4.4—can

produce a speedup of 2x or more.

Application Pages
Application SFSMs LUT-FFs Clock (MHz) LUT-FFs Clock (MHz)
IIR 8 1,922 166.3 2,110 174.2
JPEG Decode 9 7,442 47.0 8,080 59.2
JPEG Encode 11 6,728 57.5 7,394 59.8
MPEG Encode IP 80 41,472 46.9 54,532 47.3
MPEG Encode IPB 114 65,772 50.3 80,440 39.7
Wavelet Encode 30 8,320 105.7 9,666 118.7
Wavelet Decode 27 8,712 108.8 9,830 127.2
Total 279 140,368 46.9 172,052 39.7

Table 4.2: Application area and speed; unoptimized, post-PAR, on XC2VP70.

4.3.2 Compiling Application Pages

Compiling the pages of an application separately provides a means to identify partic-

ular pages and system effects worthy of optimization. Since an application is merely
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a composition of pages, its area and speed should correspond closely to the area and

speed of its pages. Any discrepancy is an opportunity for optimization.

Table 4.2 shows, for each application, the cumulative area of its separately com-

piled pages, and the speed of its slowest page. We find that application area is smaller

than cumulative page area by 8%-24%. We hypothesize that this effect is due to inter-

page optimizations during synthesis and technology mapping of applications, such as

propagation of constants and don’t-cares across streams, and simultaneous covering

of producer and consumer pages. The opportunity for such optimizations would be

greatly reduced using pipelined streams.

We also find that application speed is typically slower than critical page speed by

5%-21%. We hypothesize that this result is due to two effects: (1) the unpipelined

stream implementation introduces combinational delay between producer and con-

sumer, and (2) the application encounters more interconnect delay than any sepa-

rately compiled page, by virtue of being larger. These effects can be mitigated by

stream-enabled pipelining, whose results are discussed in Sections 4.4 and 4.5 below.

4.3.3 Page and Component Speeds

Compiling the components of pages separately provides a means to study how those

components contribute to the speed of the whole. We study the 279 pages aggregated

from all seven multimedia applications. Figure 4.8 shows the clock speed of each

page and its components, from separate compilation. Pages are ordered along the

horizontal axis, from fastest to slowest. For each page position on the horizontal

axis, the figure displays a tuple of speeds: the speed of the page, its SFSM (without

queues), its FSM, and its datapath.

The “Page” line of Figure 4.8 indicates that page speeds range from 40MHz to

315MHz. Pages can be quite fast, even in this unoptimized, baseline study. We
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Figure 4.8: Speeds for 279 SFSMs, ordered by page speed; unoptimized, post-PAR, on
XC2VP70.

Figure 4.9: Distribution of page speeds for 279 SFSMs; unoptimized, post-PAR, on
XC2VP70.
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find that 47% of pages are over 200MHz, 43% are 100-200MHz, and only 10% are

under 100MHz (this breakdown is also shown in Figure 4.9). To improve application

performance, it would suffice to optimize only those few, slowest pages. In those

pages, and in fact in most pages, speed is dominated by the datapath.

The “FSM” line of Figure 4.8 indicates that FSMs are very fast, always over

200MHz, and never the slowest part of a page. These are the finite state machines

used for stream flow control and sequencing within an SFSM. We conclude that the

performance cost of stream flow control is negligible.

Queue speed is not shown in Figure 4.8. Nevertheless, we know from Section 3.4.2

that SRL-based queues are over 200MHz (before PAR) for the depths and widths

used in this study. Thus, a queue cannot be the critical component of a page except

in the fastest pages. For those cases, we can examine the “SFSM” line of the figure,

which denotes a page without its queues. In most cases, the “Page” line tracks the

”SFSM” line, indicating that the page’s queues are no slower than its SFSM. We shall

assume that queues are critical only if “Page” speed is slower than “SFSM” speed

by 5% or more, allowing some slack for differences in optimization during separate

compilation. Under this criterion, queues are critically slow in 34% of pages, and only

in fast pages (123-315MHz).

In the remaining 66% of pages, the critically slow component is the datapath.

Those datapaths were not hand-optimized in TDF, nor were they automatically op-

timized by the TDF compiler for this baseline study. Fortunately, many of them

are easy to pipeline. The slowest pages tend to be entirely or mostly feed-forward,

including DCT, IDCT, and token distributors/sequencers for MPEG motion estima-

tion. Those pages are slow simply because they were coded in TDF using a single,

non-pipelined state, and that state determines the clock rate. Section 4.4 presents

the results of optimizing those pages by automatic, stream-based logic pipelining.
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4.3.4 Page and Component Areas

Compiling the components of pages separately provides a means to study how those

components contribute to the area of the whole. We study the 279 pages aggregated

from all seven multimedia applications. Figure 4.10 shows the area of each page and

its components, from separate compilation. Pages are ordered along the horizontal

axis, from largest to smallest. For each page position on the horizontal axis, the figure

displays a tuple of areas: the area of the page, its SFSM (without queues), its FSM,

and its datapath. Figure 4.11 is a cumulative version of Figure 4.10. For each page

position on the horizontal axis, the figure displays the cumulative area of the page

(or component) plus all pages (or components) to the left.

The “SFSM” line of Figure 4.10 indicates that SFSM areas range from 24 to 2,380

4-LUT cells. Most of these SFSMs, 86.7%, are smaller than 512 4-LUT cells. This

area distribution is by design, indicating that the TDF programmer had a preferred

range of module granularity. The smallest SFSMs tend to have a minimal datapath

or no datapath at all, including a token copy with fanout of 2, and a comparison to

zero. The largest SFSMs tend to be dominated by a complicated datapath, including

DCT, IDCT, an MPEG motion vector selector that chooses the (vector,error) pair

with least error (full of comparators and multiplexers), and an 8x8 matrix transpose

(full of multiplexers).

Module granularity has some important consequences to the implementation.

Small modules incur a higher area overhead for stream support. Large modules

amortize that overhead but may instead suffer performance degradation from long

routing delay. Striking a balance in module size is analogous to the traditional prob-

lem of choosing a page size for virtual memory. The area overhead of queues further

increases module size. The “Page” line of Figure 4.10, which includes queue area,

shows page areas ranging from 60 to 2,888 4-LUT cells. At thousands of 4-LUT cells,
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Figure 4.10: Areas for 279 SFSMs, ordered by page area; unoptimized, post-PAR, on
XC2VP70.

Figure 4.11: Cumulative areas for 279 SFSMs, ordered by page area; unoptimized, post-
PAR, on XC2VP70.
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% Area % Area % Area % Area % Area
Application FSM Datapath SFSM Queue Page
IIR 3.4% 72.3% 72.3% 27.7% 100.0%
JPEG Decode 7.0% 63.0% 71.3% 28.7% 100.0%
JPEG Encode 7.5% 55.2% 63.1% 36.9% 100.0%
MPEG Encode IP 5.5% 57.5% 60.3% 39.7% 100.0%
MPEG Encode IPB 5.2% 56.7% 59.5% 40.5% 100.0%
Wavelet Encode 10.1% 61.9% 68.0% 32.0% 100.0%
Wavelet Decode 8.5% 62.5% 70.4% 29.6% 100.0%
Total 5.9% 58.0% 61.7% 38.3% 100.0%

Table 4.3: Area breakdown based on separately compiled components; unoptimized, post-
PAR, on XC2VP70. Queue area is derived as 100% minus SFSM area.

our largest pages are large enough to incur non-trivial routing delay. Nevertheless,

many of the the large datapaths are entirely or mostly feed-forward, so they would be

easy to partition. In fact, they would be naturally partitioned by pipeline registers,

as in our proposed automatic, stream-enabled logic pipelining. Chapter 6 discusses

additional, automatic techniques for transforming module granularity.

By aggregating page and component areas, we can find the relative contribution

of each kind of component to the total area. Figure 4.11 shows the aggregate areas

for all 279 pages. Table 4.3 breaks down the aggregate areas for each of the seven

applications. We find that FSMs contribute only 5.9% of the aggregate area. Hence,

we conclude that the area cost of stream flow control is negligible. We find that

queues contribute 38.3% of the aggregate area. Possible ways to reduce the relative

area of queues include: (1) optimizing the queue implementation, (2) reducing queue

depths, and (3) modifying the granularity of SFSMs to reduce the number of streams,

e.g. by merging SFSMs.

In summary, we find the following results from baseline, unoptimized compilation.

The cost of stream flow control is negligible. The FSMs responsible for flow control

are never performance-critical and contribute only 5.9% of the total area. Stream

queues are seldom performance critical (critical in only 34% of the fastest pages), but
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they do contribute a sizable 38% of the total area. And finally, datapaths tend to limit

performance and need to be optimized. Datapath optimization by logic pipelining is

the subject of the next section.

4.4 Logic Pipelining

In this section, we present the results of mapping applications to the XC2VP70 FPGA,

using the methodology of Chapter 3, with automatic, stream-enabled pipelining of

logic. We explore the use of logic pipelining as well as logic relaying at different

depths. Section 4.4.1 considers the case of uniform pipelining, where all streams

are pipelined identically. Section 4.4.2 considers the case of page-specific pipelining,

where each page is pipelined separately.
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Figure 4.12: Stream enabled pipelining, parameterized by depths Li + Lp + Lr + Wp

Stream-enabled logic pipelining and logic relaying involve placing registers on

streams and then retiming those registers into SFSM datapaths. Figure 4.12 shows

the placement of registers on the input and output streams of a hypothetical SFSM

to be pipelined. On the input side, we consider logic relaying of depth Li. On the
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output side, we consider logic pipelining of depth Lp and logic relaying of depth

Lr. Interconnect pipelining of depth Wp is also shown in the figure, but its use is

deferred to Section 4.5. In this section, each instance of logic pipelining is labeled

by its depths Li + Lp + Lr and its aggregate depth L. Assuming that all streams

are pipelined identically, each stream queue must be modified to reserve Lp slots to

correct for the staleness of pipelined flow control signals. That is, each queue will

assert back-pressure whenever Lp or fewer slots are empty.

4.4.1 Uniform Logic Pipelining

The pipelining parameter space Li + Lp + Lr is large. We begin by exploring it along

one dimension at a time. We search for viable, single-variable trends by holding two

depths constant, sweeping the third depth, and observing the effect on application

speed. A viable trend would be one that yields a speedup that (1) is non-zero, and

(2) increases monotonically with pipelining depth. It is possible that particular forms

of pipelining do not work well for particular applications, due to circuit topology,

or due to the interaction between retiming and other optimizations in synthesis and

technology mapping. To observe these effects, we study the speeds for single-variable

trends as reported by Synplify, before place-and-route.

Figure 4.13 shows application speeds for seven single-variable trends: 0 + 0 + Lr,

1 + 0 + Lr, 0 + Lp + 0, 1 + Lp + 0, Li + 0 + 0, Li + 0 + 1, and Li + 1 + 0. We

make the following observations:

Speed does not always increase monotonically with pipelining depth.

In many cases, adding one level of pipelining actually decreases performance.

This typically happens at high depths, e.g. in the trend 1 + 0 + Lr, several

applications are slower with Lr = 3 than with Lr = 2. We attribute this effect

to idiosyncratic interactions between retiming and other optimizations during
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Figure 4.13: Application Speed for different logic pipelining trends; pre-PAR, on XC2VP70.
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synthesis and technology mapping. At high pipelining depths, timing driven

optimizations have more choices, and thus may stumble on more, detrimental

interactions.

Some applications need input-side registers. In the trend 0 + Lp + 0, which

has no input-side registers, MPEG Encode IP and IPB are limited to 73MHz,

regardless of Lp. Adding one level of input-side logic relaying, in the trend

1 + Lp + 0, allows those applications to reach 116MHz and 109MHz, respec-

tively. This phenomenon is due to a particular SFSM which cannot be effec-

tively pipelined by retiming registers from the outputs backward, and which

instead requires retiming registers from the inputs forward. Similarly, in the

same two trends, JPEG Decode attains higher clock rates with one level of

input-side logic relaying than without. Ironically, JPEG Encode encounters a

non-monotonicity: adding one level of input-side logic relaying slows it down.

One input-side register is enough. The three trends that vary Li demonstrate a

speedup for Li = 1 but typically no additional speedup for Li > 1.

The two most viable single-variable trends appear to be 0+0+Lr and 1+Lp +0.

They demonstrate little non-monotonicity and, in general, higher speeds than the

other trends. We study these trends in greater detail in Figures 4.14-4.17 and their

corresponding Tables 4.4-4.7.

Figure 4.14 / Table 4.4 show the speed of our seven multimedia applications, after

place and route on XC2VP70, for logic pipelining trends 0 + 0 + Lr and 1 + Lp + 0.

The missing entries for MPEG Encode IPB indicate cases where that application,

expanded by pipelining, no longer fit on the target chip. We find that stream-enabled

logic pipelining accelerated all the applications beyond 100MHz, except for MPEG

Encode IP and IPB (more on MPEG below).
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Figure 4.15 / Table 4.5 show the speedup of our seven multimedia applications, for

logic pipelining trends 0+0+Lr and 1+Lp+0, relative to the unpipelined case 0+0+0.

It is evident that different applications receive different benefit from logic pipelining,

and no one parameterization is best everywhere. Some applications, notably the

JPEGs, are particularly well suited to stream-enabled logic pipelining, and benefit

with either trend. They continue to speed up at aggregate pipeline depths up to 4,

attaining speedups of up to 2.7. Some applications perform substantially better with

one trend, notably MPEG Encode IP, which achieves its best speedup of 1.85 with

trend 1+Lp +0. Other applications see little speedup or even non-monotonicity. The

average speedup across all seven applications is 1.4-1.5 and is similar for aggregate

pipeline depths 2-4 across both trends.

Figure 4.16 / Table 4.6 show the area of our seven multimedia applications, after

place and route on XC2VP70, for logic pipelining trends 0 + 0 + Lr and 1 + Lp + 0.

They are included for completeness.

Figure 4.17 / Table 4.7 show the area expansion of our seven multimedia applica-

tions, for logic pipelining trends 0+0+Lr and 1+Lp +0, relative to the unpipelined

case 0 + 0 + 0. The area overhead of the two trends is substantially different. Trend

0+0+Lr rises steeply with Lr, reaching up to 1.51x and averaging 1.31x at depth 4.

Trend 1 + Lp + 0 is small and relatively flat with Lp for most applications, averaging

only 1.08x at aggregate depth 4. This difference verifies that adding and retiming

enabled registers (trend 0 + 0 + Lr, output-side logic relaying) costs more area than

adding and retiming D flip-flops (trend 1+Lp +0, logic pipelining). Retimed enabled

registers often leave a residue circuit (a register-multiplexer cycle), whereas retimed D

flip-flops do not. Also, retimed enabled registers are less likely to pack well with logic,

since they have an additional input (enable) that D flip-flops do not. We conclude

that uniform, output-side logic relaying should be avoided in Virtex-II technology,

due to its additional area, except in those cases where it provides a real and desired
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performance advantage, e.g. JPEG Encode.

MPEG Encode IP and IPB, unlike our other applications, suffer from a peculiar

sensitivity to area constraint. Pipelined or not, they do not perform well when placed

and routed in the usual square floorplan that is 20% larger than the area for maximum

slice packing. However, they can attain over 100MHz when allowed to consume the

entire chip, with no area constraint (see Table 4.18). The cause of this sensitivity to

area constraint is not clear. The MPEGs are the largest applications in our application

suite. Their sensitivity may be the result of greater graph connectivity, combined with

greater application size, resulting in an inability to bring connected components close

enough during area-constrained placement.

4.4.2 Page-Specific Logic Pipelining

Uniform pipelining is a simplification, and potentially a costly one. Pipelining every

SFSM to the same depth means that some SFSMs are over-pipelined, incurring area

overhead, while others are under-pipelined, slowing application performance. Ideally,

each SFSM should be pipelined separately, to the minimum depth required to meet a

timing target. Separate optimization is entirely feasible within our streaming design

methodology, since SFSMs are decoupled by streams. In this section, we develop

simple heuristics for separate optimization of SFSMs via page-specific logic pipelining.

It is straightforward to demonstrate that over-pipelining an SFSM leads to un-

necessary area overhead and little performance improvement. Figure 4.18 shows the

average speedup of 279 pages (one SFSM per page), compiled separately with vary-

ing depths of logic pipelining. Figure 4.19 shows, in correspondence, the average area

expansion of those 279 pages. In each figure, pages are binned on the horizontal axis

by their initial, non-pipelined speed: 0-100MHz, 100-200MHz, and over 200MHz. We

find that the greatest speedup occurs for initially slow pages. Initially fast pages, on
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Logic Pipelining Li + Lp + Lr

Application 0+0+0 0+0+1 0+0+2 0+0+3 0+0+4 1+0+0 1+1+0 1+2+0 1+3+0
IIR 166.3 177.1 179.9 180.8 185.2 161.7 174.8 181.3 181.4
JPEG Decode 47.0 71.4 101.3 117.3 129.9 81.2 106.8 127.9 126.5
JPEG Encode 57.5 76.8 116.9 124.2 119.3 64.0 104.6 106.7 98.4
MPEG Encode IP 46.9 56.4 53.2 55.3 60.4 63.7 86.8 59.1 57.4
MPEG Encode IPB 50.3 63.8
Wavelet Encode 105.7 126.3 123.9 136.5 127.4 119.4 132.4 118.1 124.1
Wavelet Decode 108.8 117.8 122.7 127.4 119.5 107.8 126.6 115.2 123.2

Table 4.4: Application speed (MHz) with logic pipelining; post-PAR, on XC2VP70.

Figure 4.14: Application speed with logic pipelining; post-PAR, on XC2VP70.
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Logic Pipelining Li + Lp + Lr

Application 0+0+0 0+0+1 0+0+2 0+0+3 0+0+4 1+0+0 1+1+0 1+2+0 1+3+0
IIR 1.00 1.06 1.08 1.09 1.11 0.97 1.05 1.09 1.09
JPEG Decode 1.00 1.52 2.16 2.50 2.77 1.73 2.27 2.72 2.69
JPEG Encode 1.00 1.34 2.03 2.16 2.08 1.11 1.82 1.86 1.71
MPEG Encode IP 1.00 1.20 1.13 1.18 1.29 1.36 1.85 1.26 1.22
MPEG Encode IPB 1.00 1.27
Wavelet Encode 1.00 1.20 1.17 1.29 1.21 1.13 1.25 1.12 1.17
Wavelet Decode 1.00 1.08 1.13 1.17 1.10 0.99 1.16 1.06 1.13
All (Geo. Mean) 1.00 1.23 1.39 1.48 1.49 1.19 1.51 1.42 1.42

Table 4.5: Application speedup from logic pipelining; post-PAR, on XC2VP70.

Figure 4.15: Application speedup from logic pipelining; post-PAR, on XC2VP70.
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Logic Pipelining Li + Lp + Lr

Application 0+0+0 0+0+1 0+0+2 0+0+3 0+0+4 1+0+0 1+1+0 1+2+0 1+3+0
IIR 1,922 1,984 1,984 2,244 2,380 1,922 1,984 2,112 2,312
JPEG Decode 7,442 7,812 9,112 10,224 11,250 7,812 7,812 7,812 7,938
JPEG Encode 6,728 7,080 8,064 8,844 9,522 6,962 7,080 6,962 7,080
MPEG Encode IP 41,472 42,924 45,300 52,800 60,160 45,000 45,602 45,300 46,208
MPEG Encode IPB 65,772 66,912
Wavelet Encode 8,320 8,450 8,712 9,522 10,512 8,450 8,580 8,320 8,580
Wavelet Decode 8,712 9,112 9,112 9,112 9,248 8,712 9,112 8,978 8,978
Total 140,368 144,274 82,284 92,746 103,072 78,858 80,170 79,484 81,096

Table 4.6: Application area (LUT-FFs) with logic pipelining; post-PAR, on XC2VP70.

Figure 4.16: Application area with logic pipelining; post-PAR, on XC2VP70.
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Logic Pipelining Li + Lp + Lr

Application 0+0+0 0+0+1 0+0+2 0+0+3 0+0+4 1+0+0 1+1+0 1+2+0 1+3+0
IIR 1.00 1.03 1.03 1.17 1.24 1.00 1.03 1.10 1.20
JPEG Decode 1.00 1.05 1.22 1.37 1.51 1.05 1.05 1.05 1.07
JPEG Encode 1.00 1.05 1.20 1.31 1.42 1.03 1.05 1.03 1.05
MPEG Encode IP 1.00 1.04 1.09 1.27 1.45 1.09 1.10 1.09 1.11
MPEG Encode IPB 1.00 1.02
Wavelet Encode 1.00 1.02 1.05 1.14 1.26 1.02 1.03 1.00 1.03
Wavelet Decode 1.00 1.05 1.05 1.05 1.06 1.00 1.05 1.03 1.03
All (Geo. Mean) 1.00 1.04 1.10 1.21 1.31 1.03 1.05 1.05 1.08

Table 4.7: Application area expansion from logic pipelining; post-PAR, on XC2VP70.

Figure 4.17: Application area expansion from logic pipelining; post-PAR, on XC2VP70.
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average, see no speedup or even a slight slowdown. At the same time, those initially

fast pages see the greatest area expansion from pipelining—up to 1.9x per page. They

need not be pipelined at all. In the uniform pipelining case, such pages contribute

unnecessary area overhead.

We propose a heuristic approach to system optimization by separate optimization

of each SFSM. We take the simplifying assumption that application speed is precisely

the speed of the slowest page. We dub that page the critical page. To optimize

application speed, it suffices to repeatedly optimize the critical page. Each time a

critical page is sped up, a different page becomes critical, and the process repeats.

The process ends when the present critical page can no longer be sped up. This

procedure for system optimization is codified in Algorithm 4.1.

{P is a priority list of pages, sorted by speed, slowest first}
{p, p′ are pages}

repeat
p← pop(P )
p′ ← improve(p)
insert(P, p′)

until speed(p′) ≤ speed(p)

Algorithm 4.1: Page-Specific Logic Pipelining

In the algorithm, procedure “improve” refers to optimizing an individual page.

The improvement to the page may be incremental, for example, adding one level

of pipelining. If the page remains critical, or if it becomes critical again later, it

will be incrementally improved again. If no improvement is possible, “improve” does

nothing, and system optimization ends. In principle, “improve” may consider any

kind of optimization. In practice, it will consider a limited search space, such as

choosing a depth for stream-enabled logic pipelining with a particular, single-variable

trend.
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Figure 4.18: Page speedup from logic pipelining, binned by non-pipelined speed; post-
PAR, on XC2VP70.

Figure 4.19: Page area expansion from logic pipelining, binned by non-pipelined speed;
post-PAR, on XC2VP70.
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In the algorithm, procedure “speed” refers to the speed of an individual page.

Evaluating speed may involve full recompilation and place and route. Consequently,

the fewer number of “improve” steps, the better. For the study below, we ran Algo-

rithm 4.1 with full place and route for each page.

We consider three heuristics to implement “improve”. Each heuristic chooses new

parameters for stream-enabled logic pipelining for a particular page. To limit the

search space, we consider the trend 0 + 0 + Lr with Lr ≤ 4 and the trend 1 + Lp + 0

with Lp ≤ 3. The heuristics are:

Max: Choose the pipelining parameterization that yields maximum page speed.

Consider all depths of either trend (brute force search).

Greedy Lr: Increase pipelining depth by one on the trend 0 + 0 + Lr.

Greedy Lp: Increase pipelining depth by one on the trend 1 + Lp + 0.

Due to idiosyncrasies in back-end optimizations, page speed does not always in-

crease monotonically with pipelining depth. Consequently, the greedy heuristics for

“improve” may add a level of pipelining that actually slows a page down. In such

a case, system optimization would end early. This shortcoming may be ameliorated

with look-ahead, i.e. adding more than one level of pipelining at a time in “improve”

to ensure a speed improvement.

For our seven applications, page-specific logic pipelining consistently yields better

performance at less area than uniform pipelining. Figures 4.20-4.23 and their cor-

responding Tables 4.8-4.11 show the results of page-specific as well as uniform logic

pipelining for our seven applications, after place and route on XC2VP70. For each

application and each pipelining approach, we report critical page speed (Figure 4.20),

critical page speedup (Figure 4.21), cumulative page area (Figure 4.22), and cumula-

tive page area expansion (Figure 4.23). Figures 4.24-4.25 replot the geometric mean,
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across all applications, of speedups and area expansions. In generating these results,

Algorithm 4.1 was evaluated based on post-PAR page speeds, and all results are

reported post-PAR.

We find that page-specific logic pipelining using “Max” (brute force) produces

better performance than every instance of uniform logic pipelining, using less area

than most. It yields an average speedup of 1.83 and an average expansion of only

1.15. Heuristic “Greedy Lr” performs slightly worse than “Max” but still outperforms

almost every instance of uniform logic pipelining. It yields an average speedup of

1.70 and an even smaller average expansion of 1.09. Heuristic “Greedy Lp” does not

yield as high a speedup, though it has the lowest expansion, at 1.03. It is particularly

ineffective for the MPEGs, where non-monotonicity causes the search to end early. We

also note that JPEG Decode incurs an unusual, higher-than-average area expansion

with heuristics “Max” and “Greedy Lr.” That expansion owes simply to the fact that

the application’s critical page(s) (e.g. IDCT) comprise a particularly large fraction of

the application area.

In summary, we find that page-specific logic pipelining offers an effective, auto-

matic way to pipeline streaming applications for a fairly low area cost. The “Greedy

Lr” heuristic offers an average speedup of 1.83 with an average area overhead of 15%.

Separate optimization of SFSMs is not a complete approach to system optimiza-

tion, since it ignores system level effects. Such system level considerations include:

System clock speed equals critical page speed only if pages are combinationally

decoupled. However, with page-specific pipelining, many pages remain un-

pipelined and may have high combinational delay on their stream connections.

Composing such pages may lengthen the critical path and reduce application

clock speed—unless streams are explicitly pipelined, e.g. using stream-enabled

interconnect pipelining. That additional step would decouple pages and ensure
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the validity of separate page optimization, but it would cost additional area.

System throughput in tokens-per-cycle may be reduced if pipeline delay is added

to stream feedback loops. Hence, pipelining should not be used blindly ev-

erywhere. We have ignored this case because stream feedback is rare in our

applications. Feedback is present inside SFSMs, but those internal loops are

not affected by our stream-based logic pipelining.

Stream-based system optimizations may further improve performance and area.

Examples include (1) area-time transformations to match the throughputs of

connected SFSMs, and (2) SFSM granularity transformations to reduce the cost

of stream support.

Chapter 5 discusses system level optimization in detail and revisits some of the issues

above.

4.5 Interconnect Pipelining

In this section, we present the results of mapping applications to the XC2VP70 FPGA,

using the methodology of Chapter 3, with automatic, stream-enabled pipelining of

logic and interconnect. We quantify the benefit and cost of interconnect pipelining.

For brevity, we consider only uniform pipelining, where every stream is pipelined

identically, and we omit interconnect relaying. Figure 4.12 shows the addition of

interconnect pipelining of depth Wp to a hypothetical stream, in relation to other

components. Assuming that all streams are pipelined identically, each stream queue

must be modified to reserve Lp + 2Wp slots to correct for the staleness of pipelined

flow control signals. That is, each queue will assert back-pressure whenever Lp +2Wp

or fewer slots are empty.
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IIR 174.2 162.8 164.7 173.5 173.7 183.1 158.7 162.3 176.1 188.3 174.2 188.3
JPEG Decode 59.2 94.1 114.0 118.3 122.0 75.8 103.1 107.3 125.2 153.0 153.0 125.2
JPEG Encode 59.8 93.3 130.7 127.3 134.7 77.6 108.1 83.7 102.4 146.9 130.7 108.1
MPEG Encode IP 47.3 80.9 102.3 105.1 102.2 51.0 62.2 77.7 83.5 117.5 104.3 51.9
MPEG Encode IPB 39.7 90.3 99.9 100.5 99.4 55.7 73.8 80.2 80.5 118.1 101.6 83.0
Wavelet Encode 118.7 138.6 134.8 131.5 138.3 135.6 131.1 134.4 125.9 138.6 138.6 136.0
Wavelet Decode 127.2 138.0 136.7 124.8 122.9 118.7 136.0 130.4 130.2 146.8 140.6 129.9

Table 4.8: Critical page speed (MHz) with logic pipelining; post-PAR, on XC2VP70.

Figure 4.20: Critical page speed with logic pipelining; post-PAR, on XC2VP70.
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Uniform Logic Pipelining Li + Lp + Lr Page Specific Pipelining
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IIR 1.00 0.93 0.95 1.00 1.00 1.05 0.91 0.93 1.01 1.08 1.00 1.08
JPEG Decode 1.00 1.59 1.93 2.00 2.06 1.28 1.74 1.81 2.11 2.58 2.58 2.11
JPEG Encode 1.00 1.56 2.18 2.13 2.25 1.30 1.81 1.40 1.71 2.45 2.18 1.81
MPEG Encode IP 1.00 1.71 2.16 2.22 2.16 1.08 1.32 1.64 1.77 2.48 2.21 1.10
MPEG Encode IPB 1.00 2.27 2.52 2.53 2.50 1.40 1.86 2.02 2.03 2.98 2.56 2.09
Wavelet Encode 1.00 1.17 1.14 1.11 1.16 1.14 1.10 1.13 1.06 1.17 1.17 1.15
Wavelet Decode 1.00 1.08 1.07 0.98 0.97 0.93 1.07 1.02 1.02 1.15 1.11 1.02
All (Geo. Mean) 1.00 1.42 1.60 1.59 1.61 1.16 1.35 1.37 1.46 1.83 1.70 1.41

Table 4.9: Critical page speedup from logic pipelining; post-PAR, on XC2VP70.

Figure 4.21: Critical page speedup from logic pipelining; post-PAR, on XC2VP70.
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Uniform Logic Pipelining Li + Lp + Lr Page Specific Pipelining
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IIR 2.1 2.2 2.4 2.6 2.7 2.2 2.3 2.5 2.6 2.3 2.1 2.2
JPEG Decode 8.1 10.2 11.0 12.4 13.1 8.9 10.2 9.6 9.7 11.3 11.3 8.7
JPEG Encode 7.4 9.1 9.9 10.7 11.3 8.0 8.9 9.0 9.1 8.7 8.3 7.7
MPEG Encode IP 54.5 63.7 72.6 80.9 88.3 61.2 65.5 69.4 72.4 64.6 56.7 54.7
MPEG Encode IPB 80.4 94.0 108.2 120.8 131.6 92.8 99.6 104.9 111.2 94.1 82.1 80.8
Wavelet Encode 9.7 10.6 11.5 12.3 13.5 10.0 10.7 11.0 11.6 10.5 10.0 9.8
Wavelet Decode 9.8 10.6 11.1 11.4 12.2 10.4 10.8 11.0 11.7 10.1 10.4 9.9
All (Geo. Mean) 172.1 200.4 226.6 251.2 272.8 193.4 208.1 217.4 228.2 201.6 180.9 173.8

Table 4.10: Cumulative page area (thousands of LUT-FFs) with logic pipelining; post-
PAR, on XC2VP70.

Figure 4.22: Cumulative page area with logic pipelining; post-PAR, on XC2VP70.
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Uniform Logic Pipelining Li + Lp + Lr Page Specific Pipelining
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IIR 1.00 1.06 1.12 1.21 1.29 1.03 1.10 1.19 1.25 1.07 1.00 1.05
JPEG Decode 1.00 1.26 1.36 1.54 1.62 1.10 1.26 1.19 1.20 1.39 1.39 1.08
JPEG Encode 1.00 1.24 1.34 1.45 1.53 1.08 1.21 1.21 1.22 1.18 1.13 1.05
MPEG Encode IP 1.00 1.17 1.33 1.48 1.62 1.12 1.20 1.27 1.33 1.19 1.04 1.00
MPEG Encode IPB 1.00 1.17 1.35 1.50 1.64 1.15 1.24 1.30 1.38 1.17 1.02 1.00
Wavelet Encode 1.00 1.09 1.19 1.27 1.39 1.03 1.10 1.14 1.20 1.09 1.04 1.02
Wavelet Decode 1.00 1.08 1.13 1.16 1.24 1.05 1.10 1.12 1.19 1.03 1.06 1.00
All (Geo. Mean) 1.00 1.15 1.25 1.37 1.47 1.08 1.17 1.20 1.25 1.15 1.09 1.03

Table 4.11: Cumulative page area expansion from logic pipelining; post-PAR, on
XC2VP70.

Figure 4.23: Cumulative page area expansion from logic pipelining; post-PAR, on
XC2VP70.
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Figure 4.24: Average critical page speedup from logic pipelining (geometric mean of 7
applications); post-PAR, on XC2VP70.

Figure 4.25: Average cumulative page area expansion from logic pipelining (geometric
mean of 7 applications); post-PAR, on XC2VP70.
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Routing delay is an increasingly dominant limiter to the performance of modern

systems. As CMOS device technology scales, logic delay improves faster than wire

delay. The resulting disparity forces designers to choose between (1) scaling the clock

rate to match the slower scaling of wire delay, or (2) scaling the clock rate to match

the faster scaling of logic delay but reaching fewer transistors in each clock cycle and

having to pipeline deeper.

Modular design can ameliorate the problem of routing delay, since a well-packed,

small module will use shorter routes. For our streaming applications, we can demon-

strate that the routing delay of an application’s critical page, compiled separately,

is usually lower than the routing delay of the application compiled as a whole. Ta-

ble 4.12 shows the routing delay in each application’s critical path, ranging from 45%

to 56%, depending on logic pipelining. These routing delays are in line with the Xilinx

Constraints Guide [Xilinx, 2003a] (p. 147), which states that on FPGAs, “Routing

delays typically account for 45% to 65% of the total path delays.” Table 4.13 shows

the routing delay of each application’s critical page. Table 4.14 and Figure 4.26 show

the ratio of application routing delay to critical page routing delay. That ratio is

greater than one for most applications, with most instances of logic pipelining. An

application’s clock speed would be improved if its high routing delay could be reduced

to that of its critical page.

To benefit from reduced routing delay in modular design, we must ensure that

system composition does not lengthen the critical path. First, we must ensure that

each module has little or no combinational logic delay on its interfaces. Second, we

need a way to pipeline long module-to-module routes. Both requirements can be met

using stream-enabled interconnect pipelining. Stream-enabled logic pipelining does

not suffice on its own, since (1) it may leave combinational logic delay on output

streams, and (2) it does not directly address long routes. Interconnect pipelining, on

the other hand, places non-retimable registers directly on stream wires, breaking the
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Logic Pipelining Li + Lp + Lr

Application 0+0+0 0+0+1 0+0+2 0+0+3 0+0+4 1+0+0 1+1+0 1+2+0 1+3+0
IIR 77.6% 31.9% 48.1% 45.1% 73.4% 32.4% 61.0% 48.1% 39.8%
JPEG Decode 58.7% 57.1% 47.3% 57.0% 51.1% 42.0% 36.1% 57.7% 63.4%
JPEG Encode 48.1% 56.3% 33.8% 40.7% 42.9% 61.1% 39.6% 39.2% 45.3%
MPEG Encode IP 49.5% 82.1% 77.3% 69.3% 83.7% 59.4% 49.9% 69.5% 75.1%
MPEG Encode IPB 50.9% 65.5%
Wavelet Encode 31.3% 36.3% 39.4% 31.3% 33.9% 38.5% 33.9% 45.7% 46.8%
Wavelet Decode 36.9% 40.8% 44.2% 54.1% 53.4% 36.9% 62.3% 52.2% 58.4%
Average 50.4% 52.9% 48.4% 49.6% 56.4% 45.1% 47.1% 52.1% 54.8%

Table 4.12: Routing delay in application critical path, with logic pipelining; post-PAR, on
XC2VP70.

Logic Pipelining Li + Lp + Lr

Application 0+0+0 0+0+1 0+0+2 0+0+3 0+0+4 1+0+0 1+1+0 1+2+0 1+3+0
IIR 58.8% 32.9% 30.3% 33.2% 31.8% 31.1% 32.3% 33.1% 33.5%
JPEG Decode 37.5% 37.9% 71.6% 77.0% 73.0% 62.5% 53.4% 52.9% 38.7%
JPEG Encode 41.0% 56.8% 35.9% 38.5% 37.5% 55.7% 57.6% 49.7% 35.4%
MPEG Encode IP 57.1% 46.1% 52.8% 39.0% 39.2% 65.3% 68.6% 64.5% 48.4%
MPEG Encode IPB 67.0% 39.6% 41.0% 41.3% 42.3% 69.7% 53.1% 49.2% 65.6%
Wavelet Encode 26.3% 29.6% 34.2% 35.7% 30.7% 29.0% 31.3% 31.3% 35.6%
Wavelet Decode 30.1% 37.9% 46.2% 42.9% 57.2% 33.6% 46.9% 39.6% 50.8%
Average 45.4% 40.1% 44.6% 43.9% 44.5% 49.6% 49.0% 45.8% 44.0%

Table 4.13: Routing delay in critical page, with logic pipelining; post-PAR, on XC2VP70.

Logic Pipelining Li + Lp + Lr

Application 0+0+0 0+0+1 0+0+2 0+0+3 0+0+4 1+0+0 1+1+0 1+2+0 1+3+0
IIR 1.32 0.97 1.59 1.36 2.31 1.04 1.89 1.45 1.19
JPEG Decode 1.57 1.51 0.66 0.74 0.70 0.67 0.68 1.09 1.64
JPEG Encode 1.17 0.99 0.94 1.06 1.14 1.10 0.69 0.79 1.28
MPEG Encode IP 0.87 1.78 1.46 1.78 2.14 0.91 0.73 1.08 1.55
MPEG Encode IPB 0.76 1.65
Wavelet Encode 1.19 1.23 1.15 0.88 1.10 1.33 1.08 1.46 1.31
Wavelet Decode 1.23 1.08 0.96 1.26 0.93 1.10 1.33 1.32 1.15
All (Geo. Mean) 1.13 1.28 1.08 1.13 1.26 1.00 0.99 1.17 1.34

Table 4.14: Ratio: application routing delay vs. critical page routing delay, with logic
pipelining; post-PAR, on XC2VP70.
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Figure 4.26: Ratio of routing delay in application versus critical page, with logic pipelining;
post-PAR, on XC2VP70.

combinational paths of logic as well as routing.

Figure 4.27 / Table 4.15 show speedups for our seven applications using inter-

connect pipelining of depths Wp = 1 and 2, relative to the case of no intercon-

nect pipelining (Wp = 0). We consider several instances of aggressive, uniform logic

pipelining, since routing delay is more dominant at higher clock speeds. Surprisingly,

we find little speedup from interconnect pipelining, not more than 4%, and in some

cases yielding a slowdown. We have verified that this limitation is not due to (1)

non-monotonic, poor optimizations in synthesis or technology mapping, nor to (2)

poor slice packing of interconnect pipelining registers, which may tie the registers to

producer or consumer logic and make them less mobile during placement2. Inter-

estingly, this limitation seems to be a consequence of using a constrained floorplan

for placement. The results reported above use a square floorplan that is 20% larger

than the area required for minimum slice packing. Removing the floorplan and using
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the entire chip enables more meaningful speedups for interconnect pipelining. It has

the double benefit of improving speed for the case of no interconnect pipelining and

simultaneously enabling more benefit with interconnect pipelining.

Figure 4.28 / Table 4.16 show speedups for our seven applications using inter-

connect pipelining of depths Wp = 1 and 2, relative to the case of no interconnect

pipelining (Wp = 0), placed and routed with no area constraint on XC2VP70. Fig-

ure 4.29 / Table 4.17 show the corresponding area expansions. For logic pipelining

trend 0 + 0 + Lr, we find that a single level of interconnect pipelining works best.

It yields an average speedup of 15%, that number being heavily biased by a high

speedup to MPEG Encode IP. A second level of interconnect pipelining produces less

speedup, apparently because its greater area suffers the same congestion effects as

the constrained floorplan above. For logic pipelining trend 1 + Lp + 0, we find that

interconnect pipelining produces nearly no speedup on average. Nevertheless, with

this trend, most applications are already faster than with the other trend, even before

interconnect pipelining.

Our results above indicate that interconnect pipelining produces a relatively small

performance improvement on Virtex II-Pro. A more meaningful performance im-

provement is had simply by providing more area for place-and-route. Area-constrained

PAR suffers from two problems that lead to poorly performing circuits. First, high

logic utilization prevents a placer from bringing all connected components close to-

gether, creating some unnecessarily distant paths (we have observed paths crossing

half the chip or more). Second, routing congestion leads to longer routes and, in some

cases, to allocating long, slow wires when short, fast wires would have sufficed. This

2It is possible to constrain slice packing so that interconnect pipelining registers are never packed
with producer or consumer logic. Such a constraint would make the registers fully mobile dur-
ing placement, and ostensibly help to overcome routing delay. In practice, this approach did not
substantially improve the speed of any of our application except the MPEGs. Furthermore, this
approach incurs an area overhead proportional to the number of streams.
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wire allocation problem is specific to segmented routing architectures, where long

wires are slower due to higher capacitance. Our stream-enabled interconnect pipelin-

ing may exacerbate these problems by consuming additional resources and creating

higher utilization and congestion.

There are several ways to reduce utilization and congestion in a fixed area, to

better enable interconnect pipelining. First, we can use page-specific logic pipelining

in place of uniform logic pipelining, since it requires less area. Second, we can consider

changing the way in which interconnect registers are allocated. In the conventional

tool flow for Virtex/Spartan FPGAs, interconnect registers are allocated directly in

the netlist, packed into slices (with logic if possible), then placed and routed. Weaver

et al. [Weaver et al., 2003] propose changing the tool chain to allocate interconnect

registers after placement. Register need would be determined by post-placement

retiming, estimating routing delay from Euclidean distance in the placement. Free

registers would then be scavenged from the existing placement and connected by

incremental rerouting. This approach has almost no area overhead and would suit us

well.

For completeness, we include the absolute speed and area of our applications

with interconnect pipelining. Figure 4.30 / Table 4.18 show the speeds of our seven

applications using interconnect pipelining of depths Wp = 1 and 2, relative to the case

of no interconnect pipelining (Wp = 0), placed and routed with no area constraint on

XC2VP70. Figure 4.31 / Table 4.19 show the corresponding areas.
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Logic Pipelining Li + Lr + Lp / Interconnect Pipelining Wp

0+0+2 0+0+3 1+2+0 1+3+0
Application 0 1 2 0 1 2 0 1 2 0 1 2
IIR 1.00 1.02 1.03 1.00 1.00 0.96 1.00 1.04 0.95 1.00 1.02 0.99
JPEG Decode 1.00 1.04 1.15 1.00 1.17 0.90 1.00 0.92 0.93 1.00 0.99 0.77
JPEG Encode 1.00 0.98 1.06 1.00 0.85 1.05 1.00 0.97 0.94 1.00 1.05 1.01
MPEG Encode IP 1.00 1.05 0.95 1.00 0.94 1.05 1.00 1.03 0.83 1.00 1.03 1.12
MPEG Encode IPB
Wavelet Encode 1.00 1.03 1.06 1.00 0.89 0.90 1.00 1.05 1.10 1.00 1.06 1.01
Wavelet Decode 1.00 1.03 1.00 1.00 0.92 0.93 1.00 1.04 1.09 1.00 0.97 0.98
All (Geo. Mean) 1.00 1.02 1.04 1.00 0.95 0.96 1.00 1.01 0.97 1.00 1.02 0.97

Table 4.15: Application speedup from interconnect pipelining; post-PAR, on XC2VP70.

Figure 4.27: Average application speedup from interconnect pipelining (mean of 7 appli-
cations); post-PAR, on XC2VP70.
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Logic Pipelining Li + Lr + Lp / Interconnect Pipelining Wp

0+0+2 0+0+3 1+2+0 1+3+0
Application 0 1 2 0 1 2 0 1 2 0 1 2
IIR 1.00 0.95 1.00 1.00 1.07 1.03 1.00 1.02 0.97 1.00 1.01 0.99
JPEG Decode 1.00 1.13 1.04 1.00 0.87 0.81 1.00 1.17 1.17 1.00 1.27 1.04
JPEG Encode 1.00 1.13 1.10 1.00 0.93 0.83 1.00 1.02 1.03 1.00 0.92 1.00
MPEG Encode IP 1.00 1.63 1.00 1.00 2.86 2.45 1.00 1.01 0.95 1.00 1.05 0.93
MPEG Encode IPB 1.00
Wavelet Encode 1.00 1.07 1.04 1.00 0.99 0.94 1.00 0.97 0.99 1.00 1.00 1.02
Wavelet Decode 1.00 1.08 1.05 1.00 0.96 1.00 1.00 0.97 1.03 1.00 0.77 0.99
All (Geo. Mean) 1.00 1.15 1.04 1.00 1.15 1.08 1.00 1.02 1.02 1.00 0.99 0.99

Table 4.16: Application speedup from interconnect pipelining; post-PAR without area
constraint, on XC2VP70.

Figure 4.28: Average application speedup from interconnect pipelining (mean of 7 appli-
cations); post-PAR without area constraint, on XC2VP70.
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Logic Pipelining Li + Lr + Lp / Interconnect Pipelining Wp

0+0+2 0+0+3 1+2+0 1+3+0
Application 0 1 2 0 1 2 0 1 2 0 1 2
IIR 1.00 1.11 1.20 1.00 1.07 1.16 1.00 1.07 1.11 1.00 1.05 1.11
JPEG Decode 1.00 0.94 1.15 1.00 0.96 0.96 1.00 1.07 1.15 1.00 1.10 1.22
JPEG Encode 1.00 0.92 1.12 1.00 1.07 1.16 1.00 1.10 1.16 1.00 1.06 1.14
MPEG Encode IP 1.00 1.13 1.27 1.00 1.13 1.13 1.00 1.08 1.14 1.00 1.06 1.13
MPEG Encode IPB 1.00 1.00 1.00 1.00
Wavelet Encode 1.00 1.05 1.15 1.00 1.06 1.15 1.00 1.09 1.15 1.00 1.07 1.12
Wavelet Decode 1.00 1.06 1.15 1.00 1.08 1.15 1.00 1.07 1.15 1.00 1.07 1.14
All (Geo. Mean) 1.00 1.03 1.17 1.00 1.06 1.12 1.00 1.07 1.14 1.00 1.07 1.14

Table 4.17: Application area expansion from interconnect pipelining; slice-packed without
area constraint, on XC2VP70.

Figure 4.29: Average application area expansion from interconnect pipelining (mean of 7
applications); slice-packed without area constraint, on XC2VP70.
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Logic Pipelining Li + Lr + Lp / Interconnect Pipelining Wp

0+0+2 0+0+3 1+2+0 1+3+0
Application 0 1 2 0 1 2 0 1 2 0 1 2
IIR 182 173 181 172 185 177 182 186 177 184 186 182
JPEG Decode 101 114 105 132 115 107 123 145 144 119 151 123
JPEG Encode 105 119 116 125 117 104 105 106 107 111 102 111
MPEG Encode IP 59 96 59 29 83 71 101 101 96 99 104 92
MPEG Encode IPB 44
Wavelet Encode 128 138 134 135 133 126 133 129 131 129 130 131
Wavelet Decode 119 129 125 132 127 132 126 123 130 126 97 125

Table 4.18: Application speed (MHz) with interconnect pipelining; post-PAR without area
constraint, on XC2VP70.

Figure 4.30: Application speed with interconnect pipelining; post-PAR without area con-
straint, on XC2VP70.
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Logic Pipelining Li + Lr + Lp / Interconnect Pipelining Wp
0+0+2 0+0+3 1+2+0 1+3+0

Application 0 1 2 0 1 2 0 1 2 0 1 2
IIR 2.3 2.5 2.7 2.5 2.7 2.9 2.5 2.6 2.7 2.6 2.8 2.9
JPEG Decode 10.8 10.1 12.4 12.0 11.5 11.5 8.5 9.1 9.8 8.8 9.6 10.7
JPEG Encode 9.5 8.8 10.7 10.1 10.8 11.7 7.2 7.9 8.4 8.0 8.4 9.1
MPEG Encode IP 52.2 59.0 66.2 58.4 65.9 66.2 48.0 51.6 54.7 51.7 54.9 58.4
MPEG Encode IPB 66.2 66.2 66.2 66.2
Wavelet Encode 10.3 10.8 11.8 11.2 11.8 12.9 9.0 9.8 10.4 9.9 10.5 11.1
Wavelet Decode 9.3 9.9 10.7 9.9 10.6 11.3 9.4 10.1 10.8 10.1 10.8 11.5
Total 160.6 101.1 114.6 104.0 113.2 116.5 150.7 157.3 96.8 157.2 97.1 103.7

Table 4.19: Application area (thousands of LUT-FF cells) with interconnect pipelining;
slice-packed without area constraint, on XC2VP70.

Figure 4.31: Application area with interconnect pipelining; slice-packed without area con-
straint, on XC2VP70.
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4.6 Summary

We have used the methodology of Chapter 3 to compile seven multimedia applica-

tions to a commercial FPGA. The applications are written in TDF and structured as

stream-connected process networks. Individual processes, or SFSMs, range in com-

plexity from simple token fanout to DCTs and Huffman coders. The applications are

characterized by having a mostly feed-forward flow of stream connections, making

them suitable for deep, system level pipelining.

Baseline compilation, without stream based optimizations, revealed the following.

Stream flow control is fast and cheap on an FPGA. The FSMs responsible for stream

flow control comprise 6% of total page area and are never the limit to performance.

Stream queues are moderately expensive, comprising 38% of total page area. They

limit performance in about 1/3 of all pages, those being the fastest pages. The dom-

inant component remains the datapaths, which comprise 58% of total page area and

limit performance in 2/3 of all pages. Application performance is typically dominated

by one or a few slow datapaths that merit optimization.

Stream-enabled logic pipelining is an automated approach to optimizing SFSMs by

systematically adding registers to stream links and retiming them into the datapath of

the producer or consumer. Uniform pipelining, where all streams are pipelined iden-

tically, provides average application speedups of 1.4x-1.5x using aggregate pipelining

depths of 2-4. We concentrate on two trends for the type and location of registers:

(1) trend 0+0+Lr uses Lr levels of enabled registers on datapath outputs; (2) trend

1 + Lp + 0 uses Lp levels of D flip flops on datapath outputs plus one level of en-

abled register on datapath inputs. The two trends provide comparable performance

but very different areas, owing to the different type of registers used. Retiming D

flip-flops requires near zero area in FPGA technology, since the registers are packed

together with logic. Retiming enabled registers, on the other hand, leaves a residue,
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typically a multiplexer-register pair, which requires additional logic cells. Accord-

ingly, the D flip flop trend, 1 + Lp + 0, incurs an area cost of only 5% for its best

depths 1+1+0, 1+2+0. The enabled register trend, 0+0+Lr, incurs an area cost

proportional to pipelining depth, which is substantially larger: 10% and 21% for its

best depths 0+0+2, 0+0+3 (these so-called best depths are those that yield most of

the available speedup—not necessarily the absolute maximum—without undue area

overhead).

Page-specific pipelining, where each SFSM is pipelined separately, yields higher

performance and lower area than uniform pipelining. We optimize a system incre-

mentally by repeatedly repipelining the presently slowest page, and we consider three

heuristics for page repipelining. The “Greedy Lr” heuristic, which adds one level of

pipelining in trend 0+0+Lr, yields an average application speedup of 1.41x with an

area overhead of only 3%—a speedup on par with uniform pipelining but in less area.

The “Greedy Lp” heuristic, which adds one level of pipelining in trend 1 + Lp + 0,

yields an average application speedup of 1.7x with an area overhead of 9%—an area

on par with uniform pipelining but with greater speedup. The exhaustive page op-

timizer “Max” beats wins in both speedup and area, yielding an average application

speedup of 1.83x with an area overhead of 15%.

Stream-enabled interconnect pipelining is an automated approach to pipelining

long, on-chip interconnect, by systematically adding registers to stream wires. We

find this approach to be very sensitive to area and routing congestion. It provides

negligible speedup using a minimum square floorplan but meaningful speedup when

using the entire chip. With logic pipelining depths 0 + 0 + 2 and 0 + 0 + 3, a single

level of interconnect pipelining provides 15% speedup for an area cost of 3% and 6%,

respectively. A second level of interconnect pipelining provides less, rather than more,

speedup.

Our methodology is hampered by two problems in the commercial FPGA tool
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flow. First is the problem of non-monotonicity in retiming-based pipelining. When

compiling behavioral verilog, adding one level of retimable pipelining registers may

actually decrease performance. Thus, performance is non-monotonic with respect to

pipelining depth. This non-monotonicity impairs efficient searching of the pipelining

parameter space for optimization. We hypothesize that the non-monotonicity is due to

idiosyncratic interactions between retiming and other optimizations during behavioral

synthesis and technology mapping. Such other optimizations include timing-driven

replication and LUT covering.

Second is the problem of interconnect register allocation. Existing FPGAs, includ-

ing the Xilinx Virtex/Spartan series, do not have architectural interconnect registers.

Instead, they rely on registers in the user design, along with timing-driven place-

ment, to reduce long routes. Registers that are explicitly allocated for pipelining the

interconnect must be packed with logic before placement, incurring extra area, and

without knowledge of actual interconnect delay. Our stream enabled interconnect

pipelining methodology, which allocates registers in that manner, thus has limited

benefit. A better approach would be to allocate interconnect pipelining registers af-

ter placement, as in [Weaver et al., 2003]. With that approach, performance would

be improved by choosing register locations with knowledge of routing delay, and area

would be saved by scavenging unused registers from the existing placement.
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System Optimization

In this chapter, we discuss a number of system optimizations that are specific to

streaming systems. In general, such optimizations are not possible or practical with

RTL-based systems, whose behavior is too unstructured and hard to analyze. A

streaming discipline, enforced by a structured language, guarantees more limited be-

havior that is amenable to analysis and optimization. We can exploit the timing

independence of process networks in optimizations that change the cycle-by-cycle be-

havior of modules, module interfaces, and communication. Possible optimizations

include not only pipelining of stream communication, but also module pipelining and

area-time transformations. The stream graph topology is a key resource for guiding

those transformations, since it, together with the stream discipline, exposes inter-

module dataflow and available system concurrency. To guide those transformations,

we rely on the stream graph. We are thus able to analyze system-wide behaviors,

throughputs, latencies, and even deadlock.

A primary challenge in stream based design is choosing stream parameters. Streams

are buffered collectively in queues and pipeline registers. A designer normally prefers

to keep those structures as small as possible, to save area and power1. However,
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stream buffering must be large enough to: (1) avoid deadlock due to buffer over-

flow, (2) pipeline communication over long distances on chip, (3) balance pipeline

delays on reconvergent paths, and (4) smooth out dynamic variations in consump-

tion/production rates. In traditional, RTL based design, communication buffering is

chosen manually, and properties (1)-(4) are verified by inspection or simulation. Nev-

ertheless, in a disciplined streaming paradigm, it is possible to apply some analysis

and automation to the problem. We systematically tackles issues (1)-(3). Section 5.1

describes how we factor the issues into separate analyses. Section 5.2 proposes a

compiler analysis to find minimum, deadlock-free buffer sizes. Section 5.5 proposes a

retiming-based approach for balancing pipeline delays on reconvergent paths, to avoid

throughput loss due to data misalignment in time. Section 5.3 proposes a stream-

aware approach for placement, which models the effect of pipelined interconnect delay

on system throughput.

Automatic module pipelining is normally not possible in RTL based design, since

pipelining changes the timing behavior of a module. We showed in Chapter 3 that a

streaming discipline accommodates several forms of module pipelining, thanks to its

timing independence. The choice of pipelining depth poses an interesting trade-off,

since deeper pipelining may improve clock rates but actually degrade system per-

formance due to pipeline bubbles. An RTL description does not distinguish pipeline

control and bubbles from other structures, so it gives a compiler no basis for optimiza-

tion of pipeline depths. A streaming system, on the other hand, associates pipeline

1Keeping stream buffers small allows a design to use smaller queue implementations. For example,
in our synthesis methodology of Chapter 3:

• a queue of depth in the hundreds uses block RAM;
• a queue of depth in the tens uses SRL16 shift registers;
• a queue of depth two uses D flip-flops as shift registers;
• a queue of depth one uses an enabled register and a gate;
• a queue of depth zero implies that the producer and consumer can be merged with no queue,

or that intermediate results can be pipelined in a depth-one, enabled register queue.
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bubbles with the presence or absence of tokens, so it is amenable to an analysis of

pipelined throughput and system performance. In Section 5.4 we show how to use

the throughput models developed for stream-aware placement in order to identify

throughput-critical processes and decide how deep to pipeline them. Combined with

module synthesis, our approach can estimate the point at which additional pipelining

begins to degrade system performance.

Another challenge in large system design is how to take advantage of the fact

that some components operate infrequently or are altogether idle for long periods.

A designer may wish to serialize or time-share non-critical components to save area,

or to turn them off to save power. An RTL compiler cannot infer most intermittent

behavior, since it must make the conservative assumption that every wire, register,

and combinational component is active at every clock cycle. Consequently, a designer

must verify intermittent behavior by inspection or simulation and manually imple-

ment any transformations. In a streaming dataflow paradigm, wires are replaced by

streams, and token flow determines module activity. It becomes possible to construct

analytic or approximate models for activity rates of modules and streams. Those

models may then be used to guide area saving transformations. In Section 5.6, we

discuss how to model activity in process networks and use it to guide serialization

transformations.

Synchronous Dataflow (SDF) scheduling techniques [Bhattacharyya et al., 1996]

[Gaudiot and Bic, 1991] provide a key starting point for modeling throughput and

activity in process networks. For example, if a measure of tokens per firing is available

for each actor, then SDF balance equations may be used to determine actor activity

across an entire system. We apply and adapt SDF techniques with average rates to

model first order process network behavior.

The analyses and optimizations discussed in this chapter are sketches. We do not

present complete implementations. Instead, we develop conceptual foundations and
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theory for the proposed analyses, and we show preliminary results where possible.

5.1 System Optimization Flow

Given a process network G = (V, E), we can define the choice of stream parameters

as three assignments:

• An assignment of logic pipelining depths: L : E → N,

• An assignment of interconnect pipelining depths: W : E → N,

• An assignment of stream buffer sizes: B : E → N.

Logic pipelining L corresponds to the pipelining methodology of Sections 3.7.3

and 3.7.4, wherein registers are added to streams and retimed into processes. The

aggregate pipelining depth L may be broken into: L = Li + Lp + Lr, where Li is

input-side logic relaying, Lr is output-side logic relaying, and Lp is D flip-flop based

logic pipelining.

Interconnect pipelining W corresponds to the pipelining methodology of Sec-

tions 3.7.2 and 3.7.1. The aggregate pipelining depth W may be broken into: W =

Wp + Wr, where Wr is interconnect relaying, and Wp is D flip-flop based intercon-

nect pipelining. Interconnect relaying is implemented in relay stations, which are two

element queues, so Wr will be a multiple of two.

Stream buffer size B refers to the total buffering in queues, including a stream’s

main queue and any relays. Pipelining in D flip-flops also provides buffering, but

we need not tally it separately, since it is mirrored in the reservation capacity of a

downstream queue. The aggregate buffer size can be broken into: B = Bq + Li +

Lr + Wr, where Bq is the size of the stream’s main queue, and the other components

are from relaying. Buffering in relays is fixed for particular purposes, but Bq can

provide excess capacity as needed. Buffering must be large enough to accomplish

several goals, for correctness and performance:
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1. The main queue must provide sufficient reservation capacity to balance D flip-

flop based pipelining: Bq ≥ Lp + 2Wp. Using the shift register queue from

Section 3.4.2, we further need an excess of one to avoid deadlock and an excess

of two for full throughput: Bq ≥ Lp + 2Wp + 2.

2. Total buffering B must be large enough to avoid artificial deadlock from buffer

overflow.

3. Total buffering B should be large enough to balance pipeline delays of recon-

vergent paths and realign data in time.

4. Total buffering B should be large enough to smooth out dynamic variations in

consumption/production rates.

We now propose an optimization flow that chooses L, W , and B in multiple

phases. Each phase is intended to meet a particular requirement of L, W, B, among

those described above. The only requirement not addressed in this flow is buffering

to smooth dynamic rates (4). The optimization flow is as follows:

1. Serialization

2. Buffer bounding (affects B)

3. Process pipelining (affects L)

4. Pipeline balancing (for logic) (affects B)

5. Synthesis

6. Stream aware place and route (affects W )

7. Pipeline balancing (for interconnect) (affects B)

8. Buffer parameter setting (affects B)

Serialization. (Section 5.6) This pass serializes infrequent and non-critical pro-

cesses and streams to save area.
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Buffer Bounding. (Section 5.2) Deadlock avoidance can be formulated as finding

a lower bound on the size of every stream buffer. Any additional buffering is harmless

to correctness and can be used to meet other requirements, such as pipelining. We

propose an approach to buffer bounding based on state space enumeration.

Process Pipelining. (Section 5.4) Logic pipelining depths are chosen with

two goals in mind: (1) improve system clock rate, and (2) avoid decreasing system

throughput in tokens-per-cycle. We extend the pipeline depth selection approach

from Section 4.4.2, which addresses (1), with a throughput model to address (2).

Pipeline Balancing. (Section 5.5) If pipeline delays on reconvergent paths are

not balanced, then data may arrive mismatched at the point of reconvergence, leading

to stalling and throughput loss. We address this by providing additional buffering on

the different paths. We provide a retiming-based approach for resizing stream buffers

to balance pipelines.

Synthesis. (Chapter 3) This step generates a netlist suitable for place and route,

via translation to Verilog and behavioral synthesis.

Stream Aware Place and Route. (Section 5.3) Interconnect pipelining depths

are chosen after placement to match actual interconnect delay. In addition, we modify

the placement engine to know that stream connections may be pipelined and need

not be kept localized. Feed forward streams can be pipelined arbitrarily deep with-

out affecting system throughput. However, feedback streams cannot. We provide

throughput models to identify which streams are most critical to throughput and

should not be pipelined.

Buffer Parameter Setting. This final step ensures that stream buffers are large

enough to provide reservation for D flip-flop based pipelining: Bq ≥ Lp + 2Wp + 2.

It then sets the reservation parameters of every stream’s main queue. Since this

step happens after queues have been placed and routed, it must be implemented

as template specialization. That is, each queue is specialized by modifying register
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initial values in its placed configuration.

5.2 Stream Buffer Bounds Analysis

There is a fundamental, semantic gap between process network abstract models and

implementations. The abstract model provides conceptually unbounded buffering for

streams, but an implementation must use finite buffering. An implementation buffer

that is too small may overflow and deadlock a computation that would otherwise

continue. We call this induced, overflow related deadlock a bufferlock, following the

terminology of SCORE [Caspi et al., 2000a]. A designer, compiler, or run-time system

is then faced with the task of choosing buffer sizes that are sufficiently large to avoid

bufferlock. This task is tractable for restricted models such as SDF. For TDFPN

and any Turing complete process network model, this task is, in general, intractable,

since determining the memory bounds of a Turing machine is undecidable. Never-

theless, the memory requirements of most programs are bounded a-priori by subtle

constraints in compression, communication, or file protocols (e.g. maximum word or

block sizes in compression). Consequently, designers have always been able to choose

buffer sizes manually. We seek to automate that process.

In this section, we describe an analysis to choose minimum, deadlock free, stream

buffer sizes for process networks. We first address the existence of minimum sizes

and why they are independent of other implementation parameters. We devise a test

for bufferlock based on state space exploration, using an adaptation of Henzinger’s

interface automata [de Alfaro and Henzinger, 2001]. We reformulate the dynamic

scheduling methodology of Parks [Parks, 1995] into an abstract interpretation and

demonstrate how to use it to choose static buffer sizes. The proposed analysis may fail

to determine static bounds for some streams, since that job is technically undecidable.

For those particular streams, the compiler must ask a designer for explicit buffer sizes.
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5.2.1 Existence of Buffer Bounds

A process network imposes a partial order on the schedule of actor firings, based

on token flow. Any particular schedule consumes and produces tokens in a particu-

lar order, and thus requires a particular amount of buffering resources. Likewise, a

particular amount of buffering resources constrains the possible choice of schedules.

In this sense, stream buffers behave like any resource that constrains a scheduling

problem. Our synthesis methodology in Chapter 3 produces a self-scheduled imple-

mentation, where actors fire concurrently as soon as flow control allows. Nevertheless,

that scheduling policy, like any other, is still limited by stream buffer space.

Parks [Parks, 1995] notes that expanding a stream buffer may increase, but not

decrease, the set of possible schedules. That is, the addition of a new buffer slot

permits all of the schedules that were possible before, and possibly new ones. If a

particular assignment of buffer sizes induces bufferlock using a particular scheduling

policy, then one may try larger buffers to enable more schedules under the same

policy. The actual scheduling policy is immaterial. Parks specifically suggests always

increasing the smallest full buffer after encountering bufferlock. If a schedule exists

that works with finite buffers, then this approach will eventually find it2. We refer to

this approach as Parks’ algorithm.

We refer to a bufferlock-free schedule as a permissible schedule. We refer to a

buffer size assignment that produces permissible schedules as a permissible buffer

size assignment. Note that a buffer size assignment may be permissible under one

scheduling policy but not under another.

The first, i.e. least, permissible buffer size assignment under Park’s algorithm

2 It is possible that no permissible schedule exists using finite memory under a particular schedul-
ing policy, or perhaps under any policy. Programs which require truly infinite memory are, in a
sense, uninteresting, since they are not practically computable. An interesting question is whether
a compiler analysis could recognize such programs. The answer, in general, is no, due to the unde-
cidability of memory bounds for process networks.
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forms a lower bound for permissible buffer sizes. Any additional expansion is guar-

anteed to produce permissible schedules under the same scheduling policy.

In a hardware implementation of process networks, the choice of queue implemen-

tation and stream pipelining comprise part of the scheduling policy. Those choices

affect delay, and thus schedule. However, Park’s algorithm is agnostic of schedule and

thus agnostic of those choices. Using the stream pipelining methodology of Chapter 3,

adding some forms of stream pipelining requires expanding the downstream buffer.

Nevertheless, if that buffer were already large enough to support permissible sched-

ules, expanding it cannot hurt. In short, a permissible assignment of buffer sizes

(assuming one exists) can be chosen before and independently of any other stream

parameters.

5.2.2 Undecidability of Buffer Bounds

An interesting question is whether a compiler analysis can be constructed to determine

stream buffer bounds. The absolute lowest bounds are not necessary—any bounds

will suffice to guarantee bufferlock-free execution. Given such a guarantee, a compiler

can synthesize a reliable implementation in near minimum resources. Unfortunately,

it is theoretically impossible to construct such a compiler analysis for the general

case. That is, determining a permissible, bounded memory schedule for a process

network is undecidable. Buck [Buck, 1993] proved this undecidability for BDF. Parks

[Parks, 1995] extended that result to DFPN and KPN by implementing BDF. The

same result applies for TDFPN, since TDFPN can implement BDF (Theorem 2.3.1).

Theorem 5.2.1. The problem of deciding whether a BDF graph can be scheduled

with bounded memory is undecidable.

Proof. The theorem and proof are due to Buck [Buck, 1993]. Buck proved that

BDF can implement a Universal Turing Machine (UTM). It follows that determining
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whether a BDF graph deadlocks, i.e. terminates, in bounded memory is at least as

hard as determining whether a UTM accesses a bounded or unbounded length of tape.

Buck proved that an algorithm for the latter problem (UTM bounded memory) could

be used to solve the halting problem, which is known to be undecidable. Consequently,

the BDF bounded memory problem is undecidable.

Theorem 5.2.2. The problem of determining whether a TDFPN program can run

without bufferlock using bounded stream buffers is undecidable.

Proof. This follows from the undecidability of BDF (Theorem 5.2.1) and the reducibil-

ity of BDF to TDFPN (Theorem 2.3.1). The phrasing “can run without bufferlock

using finite stream buffers” is equivalent to Buck’s phrasing “can be scheduled in

bounded memory.”

The undecidability of stream buffer bounds means that no static, i.e. compile

time, choice of buffer sizes can universally guarantee bufferlock-free execution. There

are several ways to deal with this undecidability. One is to provide a dynamic, rather

than static, mechanism for choosing buffer sizes. Parks’ algorithm [Parks, 1995] and

SCORE [Caspi et al., 2000a] use a simple approach of expanding buffers at run-

time whenever bufferlock occurs. However, buffer reallocation is not practical in a

digital circuit implementation of process networks. General memory allocation is a

task best left for a microprocessor, which is available in Park’s implementation as

well as SCORE. Our task is somewhat simpler, since we specifically allocate queues3.

Nevertheless, dynamic buffer allocation in hardware would incur a high area overhead.

so we prefer to use only static allocation.

3 One may envision a dynamic queue allocation scheme in hardware using a bank of queues to
provide spill capacity for bufferlocked streams. A controller would need to detect bufferlock, identify
a bufferlocked stream, and reroute that stream to a spill queue. Queues may be chained to provide
additional capacity.
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The undecidability of stream buffer bounds means only that some buffers in some

programs cannot be bounded. For example, a TDFPN program might have an SDF

equivalent subgraph, which is certainly bounded. It is useful to bound as many buffers

as possible, even if some remain unbounded. The remaining set of unbounded buffers

may be small enough to afford dynamic allocation in hardware. Alternatively, the

remaining set of unbounded buffers can be presented to a designer in request for a

manual specification of buffer sizes. Thus, an automatic but imperfect analysis of

stream buffer bounds can still reduce the amount of work required by a designer.

5.2.3 Abstract Parks Algorithm

Parks’ algorithm for dynamically scheduling process networks in bounded memory is

roughly as follows. Let G = (V, E) be a process network graph and b : E → N be a

buffer size assignment. Try to evaluate G with b. If the evaluation bufferlocks, then

increase b and try again. The prescribed increase of b is to expand the size of the

smallest full buffer by one.

Park’s algorithm is structured around a decision procedure that determines whether

G bufferlocks with a particular b. Call it live(G, b). While Park’s original intent was

to evaluate G and collect its results, the same approach can be used with a pure

decision procedure and no results. Suppose we had a compiler analysis for live(G, b),

i.e. an abstract interpretation rather than a full evaluation. Parks’ algorithm could

then be used to find permissible buffer bounds for G by starting with b ≡ 0 and iterat-

ing to increase b. As noted above, such a decision procedure would be undecidable in

general. However, a conservative version of the procedure could be constructed which

assumes bufferlock whenever it is too difficult to prove liveness. If the procedure

determines liveness, then Parks’ algorithm is done. If the procedure determines or

assumes bufferlock, then Park’s algorithm tries another iteration. After enough itera-
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tions, Park’s algorithm gives up. The original, run-time version would give up due to

lack of buffer memory. The abstract, compile-time version might give up due to lack

of memory for the analysis, or due to lack of time. It stands to reason that, as buffers

grow larger, the analysis becomes more expensive in memory and/or time. Thus, it

makes sense that an inconclusive analysis would give up at some large enough b.

In the next few sections, we describe an abstract analysis for live(G, b) based

on state space enumeration and automata composition. We first discuss pairwise

composition, then efficient, whole system composition. This analysis, in conjunction

with the abstract Park’s algorithm, provides a conservative analysis for stream buffer

size bounds. Applying the analysis to separate partitions of a system gives it the

opportunity to bound at least some streams. Thus, it can provide partial assistance

to a designer, even if it cannot bound all streams.

We note that Parks’ algorithm does not distinguish intrinsic deadlock from arti-

ficial deadlock (bufferlock). Intrinsic deadlock is unrelated to buffer sizes and would

happen even with infinite buffers. A simple example is to connect a source of false

tokens to an actor that requires true tokens. Another example is any feedback loop

of actors that contains no initial token, i.e. no SDF-style ideal delays and no ac-

tor willing to emit a first token. Parks’ algorithm would apply increasingly larger

buffers and never find a non-deadlocked solution. The special case of deadlock with

no full buffers is easy to identify as intrinsic (as in the feedback loop example above).

However, in the general case, intrinsic deadlock would create plenty of full buffers

upstream of the point of deadlock. Some restricted models of process networks do

have static analyses for determining intrinsic deadlock (e.g. the SDF notion of live-

ness [Bhattacharyya et al., 1996]). However, we are not aware of any such analysis

for general process networks.
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5.2.4 Deadlock Analysis via Automata Composition

A process network with finite buffers is a system with finite state. Consequently, it

should be amenable to formal verification techniques based on state space enumer-

ation. In particular, we are interested in determining whether a given system has

deadlock states, i.e. states that are not enabled to fire. Recall that a process is en-

abled to fire (in a given state) if its desired inputs are available, and if its intended

outputs will fit in its output buffers. We say that a system is enabled to fire (in a

given state) if some actor is enabled. A system is deadlocked if no actor is enabled.

This interpretation is valid with functional processes, as in SDF, BDF, and DFPN, as

well as with stateful processes, as in TDFPN and KPN. A system always has state,

namely in in its stream buffers, even if the individual processes do not.

To simplify deadlock analysis, we use an abstract interpretation of system state

that does not include data values. We are concerned only with data presence. This is

a reasonable simplification for TDFPN, where firing rules are based only on presence,

not value. Abstract system state will include queue occupancy and the FSM state

of SFSMs. Abstract state transitions will reflect token consumption and production.

Any dynamic decisions based on data values will be modeled as non-deterministic

transitions.

We develop a finite state automaton and automata composition to represent ab-

stract process state and token flow. Our automata are based on de Alfaro and Hen-

zinger’s interface automata [de Alfaro and Henzinger, 2001], which in turn are based

on Lynch’s I/O automata [Lynch and Tuttle, 1987]. We begin with a direct use of in-

terface automata. We then generalize to multi-action interface automata, which more

closely match our operational semantics and yield smaller structures for analysis.
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5.2.5 Interface Automata for Process Networks

We use de Alfaro and Henzinger’s interface automata [de Alfaro and Henzinger, 2001]

to model token flow in process networks.

5.2.5.1 Automaton Definition

An interface automaton P is a tuple:

P = (VP , V i
P ,AI

P ,AO
P ,AH

P , TP ) (5.1)

where:

• VP is a set of states,

• V i
P ⊂ VP is a singleton set of initial states,

• AI
P ,AO

P ,AH
P are mutually disjoint sets of input, output, and internal (hidden)

actions,

• AP = AI
P ∪ AO

P ∪ AH
P is the set of all actions, and

• TP ⊆ V ×AP × V is a set of transitions.

An action a ∈ AP is enabled in state v ∈ VP if a transition (v, a, v′) ∈ TP exists. That

transition may represent token consumption (a ∈ AI
P ), token production (a ∈ AO

P ),

or an internal change not involving token flow (a ∈ AH
P ). Let AI

P (v), AO
P (v), AH

P (v)

respectively denote the set of input, output, and internal actions enabled at state

v ∈ V , and let AP (v) = AI
P (v) ∪ AO

P (v) ∪ AH
P (v). A state need not be enabled to

accept all inputs, i.e. AI
P (v) = AI

P is not required. A state with no enabled actions is

a terminal state: v ∈ V s.t. AP (v) = ∅. An execution fragment e of P is a possibly

infinite, alternating sequence of states and actions, e = [v0, a0, v1, a1, ...], such that

(vi, ai, vi+1) ∈ TP ∀i. This definition of execution permits a non-deterministic choice

when multiple transitions are available in a state.
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6

Interface Automata

! A finite state machine that transitions on I/O actions

• Not input-enabled    (not every I/O on every cycle)

! G = (V, E, Ai, Ao, Ah, Vstart)

• Ai = input actions x? (in CSP notation)

• Ao = output actions y!   ”

• Ah = internal actions z;   ”

• E " V x (Ai # Ao # Ah) x V (transition on action)

! Execution trace = (v, a, v, a, …) (non-deterministic branching)

S
s?

S’

T

F

T’

F’

st;

sf;

t?

f?

o!

o!

s

t

f

o select

o

s t f

de Alfaro + Henzinger,

Symp. Found. SW Eng.

(FSE) 2001

Figure 5.1: Interface automaton for BDF select actor

7

Multi-Action Interface Automata

! A finite state machine that transitions on I/O actions

• Not input-enabled    (not every I/O on every cycle)

! G = (V, E, Ai, Ao, Ah, Vstart)

• Ai = input actions x? (in CSP notation)

• Ao = output actions y!   ”

• Ah = internal actions z;   ”

• E " V x Power(Ai # Ao # Ah) x V (transition on action)

! Execution trace = (v, A, v, A, …) (non-deterministic branching)

S’

T

F

s? st;

s? sf;

o!

o!

s

t

f

o select

o

s t f

Figure 5.2: Multi-action interface automaton for BDF select actor

Figure 5.1 shows a sample, single-action automaton for the BDF select actor. Each

node represents an automaton state v ∈ Vselect, and each arc represents a transition

(v, a, v′) ∈ Tselect labeled by a. Using CSP notation, we denote an input action as “a?”,

an output action as “a!”, and an internal action as “a;”. The automaton shown is

derived from the three-state TDF implementation of select from Figure 2.4. Interface

automata permit only on action per transition. To construct the automaton, each

TDF state was split into a sequence of automaton states separated by a single action.

Actions “s?”, “t?”, “f?” denote consuming from input streams s, t, f . Action “o!”

denotes producing to output stream o. Actions “st;”, “sf ;” denote the internal action

of determining whether the most recent value consumed from s is true or false. A

more natural translation from TDF would permit multiple actions per transition,
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as in Figure 5.2. We will extend interface automata to deal with such multi-action

transitions in Section 5.2.6.

5.2.5.2 Automata Composition

Automata may be composed to represent synchronized execution. Dataflow between

automata is represented by having an output action in one automaton match an input

action in the other automaton. The composition is restricted so that both compo-

nent automata must evaluate that shared action simultaneously. These composition

semantics represent a CSP-style rendezvous. To represent buffered streams, we will

later introduce additional automata for queues.

Two interface automata P, Q are composable if:

AH
P ∩ AQ = ∅, AI

P ∩ AI
Q = ∅,

AP ∩ AH
Q = ∅, AO

P ∩ AO
Q = ∅.

That is, P and Q may not share a common internal action, input action, or output

action. However, an output action of one may be an input action of the other. Such

shared actions represent dataflow between the automata and become internal actions

in the composition. Let shared(P, Q) = AP ∩AQ be the set of shared actions. Under

the restrictions above, we have: shared(P, Q) = (AO
P ∩ AI

Q) ∪ (AI
P ∩ AO

Q).

The composition of two composable interface automata P, Q is a product automa-

ton:

P ⊗Q = (VP⊗Q, V i
P⊗Q,AI

P⊗Q,AO
P⊗Q,AH

P⊗Q, TP⊗Q) (5.2)

where:

• VP⊗Q = VP × VQ,

• V i
P⊗Q = V i

P × V i
Q,
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• AI
P⊗Q = (AI

P ∪ AI
Q) \ shared(P, Q),

• AO
P⊗Q = (AO

P ∪ AO
Q) \ shared(P, Q),

• AH
P⊗Q = (AH

P ∪ AH
Q ) ∪ shared(P, Q),

• TP⊗Q is defined by:

TP⊗Q = {((u, v), a, (u′, v′)) | (u, a, u′) ∈ TP ∧ a 6∈ shared(P, Q) ∧ v ∈ VQ}

∪ {((u, v), a, (u′, v′)) | (v, a, v′) ∈ TQ ∧ a 6∈ shared(P, Q) ∧ v ∈ VP}

∪ {((u, v), a, (u′, v′)) | (u, a, u′) ∈ TP ∧ (v, a, v′) ∈ TQ ∧ a ∈ shared(P, Q)}

Although interface automata resemble FSMs, a product automaton is not the same

as a direct product of FSMs. A product FSM allows independent and unsynchronized

transitions for all components. A product automaton restricts transitions to enforce

synchronization. Thus, a product automaton may have as many states as a product

FSM but only a subset of its transitions. We can safely ignore any unreachable states

in the product automaton.

Figure 5.3 shows an example automata composition for a pair of processes con-

nected by a single stream x. The producer A alternates between consuming primary

input i and producing x. The consumer B alternates between consuming x and

producing primary output o. In the composition, A and B run in lock step, simulta-

neously producing and consuming x.

Figure 5.4 shows an example automata composition for a pair of processes con-

nected by two streams, x and y. The two processes access x and y in an incompatible

order and subsequently deadlock. Specifically, the producer A produces x before y,

while the consumer B consumes y before x. The resulting composition has few per-

missible transitions and many unreachable states, shown in grey. Deadlock manifests

as terminal states that have no outgoing transitions, shown in red. There is one
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reachable deadlock state.

5.2.5.3 Deadlock

A composition may have terminal states that are intentional, i.e. the product of

terminal component states, or unintentional and due to deadlock. We distinguish the

two cases as follows. Let terminal(P ) = {v ∈ VP | AP (v) = ∅} denote the set of

terminal states in P . We define4 the set of deadlock states in a composition P ⊗Q

to be:

deadlock(P, Q) = terminal(P ⊗Q) \ (terminal(P )× terminal(Q)) (5.3)

A composition P ⊗Q is live if it contains no reachable deadlock states.

Our notion of deadlock is a special case of De Alfaro and Henzinger’s notion of

illegal states. An illegal state in a composition P ⊗Q is one where P has an output

transition that is not accepted by Q as input, or vice versa. In a process network

interpretation, such states are not illegal so long as P or Q can continue to make

other transitions. That is, one automaton can stall while the other proceeds. For a

liveness analysis, we are concerned only with illegal states where neither P nor Q can

4 The definition of deadlock(P,Q) above is not associative. It does not properly distinguish the
deadlock states from one composition as contributing to the deadlock of a larger composition. For
a multi-way composition of automata Pi, we desire:

deadlock(Pi) = terminal(
⊗

i

Pi) \
∏

i

terminal(Pi)

An associative operator deadlock(P,Q) suitable for repeated pairwise composition can be defined
with the help of a recursively defined “proper terminal” operator pterminal :

pterminal(A) =

{
terminal(A) if A is uncomposed
pterminal(P )× pterminal(Q) if A = P ⊗Q

deadlock(P,Q) = terminal(P ⊗Q) \ pterminal(P ⊗Q)
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Figure 5.5: Simplified interface automata for (a) enabled register queue of depth 1,
(b) shift register queue of depth 2
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Figure 5.6: Multi-action interface automata for (a) enabled register queue of depth 1,
(b) shift register queue of depth 2

proceed, i.e. deadlock states.

5.2.5.4 Stream Buffers

To resolve the deadlock of Figure 5.4, it suffices to buffer stream x with a single

element queue. That buffer space would allow producer A to produce x and continue

even before consumer B consumes x.

Automata may be constructed to represent stream queues. A queue of depth d

is conceptually a chain of d + 1 states that reflect occupancy, ranging from empty to

full. Figure 5.5 shows automata for queues of depth 1 and 2, corresponding to the
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depth-1 enabled register queue and depth-2 shift register queue from Chapter 3. The

actual queue implementations include states that can simultaneously consume and

produce tokens. The corresponding automata would need transitions with multiple

actions, shown in Figure 5.6. However, conventional interface automata permit only

one action per transition, so we rely on a simplified form.

Figure 5.7 shows the pair of processes from Figure 5.4 composed with a depth-1

queue to buffer stream x. We compute the composition of A, B, and queue Q in two

steps, first composing A⊗Q, then (A⊗Q)⊗ B. Interface automata composition is

associative, so the alternate order of composition A⊗ (Q⊗B) would yields the same

result. The resulting composition has no reachable deadlock states, so it is live.

5.2.5.5 Deficiency of Single Action Transitions

The fact that interface automata permit only one action per transition is obstructive

for modeling process networks. A process that evaluates several actions at once, such

as reading two input streams simultaneously, must be serialized into a chain or DAG of

automata states connected by single-action transitions. This transformation creates

large automata and even larger compositions, leading to a liveness analysis with high

run-times and memory requirements. We implemented a systematic conversion of

TDF SFSMs to interface automata5 and found that an automaton typically has 10 to

20 times more states than its SFSM. A composition of N processes would have 10N

to 20N more states than a product SFSM, which becomes intractable very quickly.

Our implementation of two-process composition yielded unbuffered compositions with

over 8,000 states, with over 100,000 states using a depth-1 queue per stream, and with

over 300,000 states using a depth-2 queue per stream. And that was for a mere pair of

processes. Clearly, we need smaller automata to retain a tractable liveness analysis.

5 The interface automaton for a TDF SFSM can be derived as follows. In general, each SFSM
state must be split into a chain or a DAG of automata states connected by single-action transitions.
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Figure 5.7: Composition of two processes connected by a pair of streams and a stream
buffer. Showing initial composition A ⊗ Q, (a) process view, (b) automata view, and
second composition (A⊗Q)⊗B, (c) process view, (d) automata view.
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Serialization into single-state actions creates another problem, namely that an

interface automaton does not reflect the true, cycle-by-cycle schedule of its original

process. Likewise, an automata composition does not reflect the cycle-by-cycle be-

havior of the original process network. Each schedule yields a particular order of

token production and consumption and, consequently, a particular buffer usage. It is

not clear that an assignment of buffer sizes that yields a live automata composition

will also yield a live process network, since the two have different schedules6. Also, it

is not clear how to synthesize an efficient SFSM from an automaton or a composition

thereof. For example, if a liveness analysis indicates that a group of processes may

be composed without queues, then a designer may wish to merge the processes into

a composite process with unified control (the simpler approach of directly connecting

the processes is disallowed by the synthesis methodology of Chapter 3). A direct

translation of the composite automaton into TDF state flow would have too many

states and be too slow. Merging the web of states to improve performance is difficult

and possibly of limited benefit.

We circumvent the difficulties above by extending interface automata to handle

multiple actions per transition.

Entry into an SFSM state induces one automaton state. The inputs in the state’s firing signature are
serialized and induce a chain of automata states connected by single input transitions. Alternatively,
to represent possible reordering of consumption from multiple streams, the chain may be replaced
by a decision tree of single input transitions. If the state has multiple firing signatures, they must
correspond to sequential firing rules (see Chapter 2) and be converted into a decision tree of single
input transitions. Thereafter, each SFSM state action must be broken down into basic blocks, where
if-then-else branchings induce automata transitions on non-deterministic, internal actions. Within
each basic block, the statements of the SFSM state action are serialized into a chain of automata
states representing single-output transitions. This procedure may generate many automata states
for each SFSM state, at least N + M for an SFSM state with N inputs and M outputs.

6It may be argued that a process network needs buffers no larger than those of the corresponding
automata composition, since its possible schedules differ from those of the automata composition
only in making some actions simultaneous. There is no issue of correctness, since the simultaneity is
still subject to the precedence constraints of the original dataflow. Nevertheless, simultaneity may
allow output actions to happen closer to the input actions that consume them, thus requiring less
buffering. We do not have a proof.
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5.2.6 Multi-Action Interface Automata

We extend de Alfaro and Henzinger’s interface automata [de Alfaro and Henzinger,

2001] to allow transitions labeled by multiple actions. This extension enables a more

direct translation of processes into automata, avoiding unnecessary serialization of

actions, and retaining the operational, cycle-by-cycle behavior. The composition

semantics of multi-action interface automata are chosen to reflect and retain the

operational semantics of concurrent processes in hardware.

5.2.6.1 Automaton Definition

A multi-action interface automaton P is a tuple:

P = (VP , V i
P ,AI

P ,AO
P ,AH

P , TP ) (5.4)

which is defined identically to an interface automaton except:

• TP ⊆ V × ℘(AP )× V is a set of transitions.

A transition (v, a, v′) is associated with a set of actions a ⊆ AP rather than with a

single action. When modeling process networks, a multi-action transition can repre-

sent an atomic firing, including reading and/or writing several streams. For example,

an SDF actor needs only one automaton state with one self-looping transition. Our

definition is restricted to modeling firings that consume/produce at most one token on

each stream. This restriction is in line with the synthesis methodology of Chapter 3,

where the implementation of streams is also restricted to one token per cycle. Firings

that consume/produce more than one token on a stream could be modeled using a

multiset of actions on each transition, but that is beyond the scope of our work.

Figure 5.2 shows a multi-action automaton for the BDF select actor. The transi-

tion “i?t!” from state T models a firing involving one input and one output (likewise
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for transition “i?f !” from state F ). The two transitions from state S model a non-

deterministic choice between consuming a true or false value from input stream s.

Figure 5.6 shows multi-action automata for queues. The self-loop transition in

state “1” models a firing in full throughput mode, where the queue simultaneously

emits a buffered value and consumes a new one.

5.2.6.2 Automata Composition

The composition of two composable, multi-action interface automata P, Q is a product

automaton:

P ⊗Q = (VP⊗Q, V i
P⊗Q,AI

P⊗Q,AO
P⊗Q,AH

P⊗Q, TP⊗Q) (5.5)

which is defined identically to the composition of interface automata except:

TP⊗Q = {((u, v), a, (u′, v′)) | (u, a, u′) ∈ TP ∧ a ∪ shared(P, Q) = ∅ ∧ v ∈ VQ}

∪ {((u, v), a, (u′, v′)) | (v, a, v′) ∈ TQ ∧ a ∪ shared(P, Q) = ∅ ∧ v ∈ VP}

∪ {((u, v), a, (u′, v′)) | ∃aP , aQ s.t. a = aP ∪ aQ ∧ (u, a, u′) ∈ TP

∧ (v, a, v′) ∈ TQ}

The first line of this definition permits P to transition alone, provided its transition

contains no shared actions. The second line permits the same for Q. The third line

permits P and Q to transition together on any combination of shared and unshared

actions. This last ability reflects the operational concurrency of two self-scheduled

processes in hardware, which are allowed to step simultaneously without communi-

cating with each other. Simultaneous transition on unshared actions is not possible

in conventional interface automata, where just one action must be chosen for each

composite transition. There, advancing both P and Q on unshared actions requires

a sequence of two transitions, one for P and one for Q. In short, a composition of
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Figure 5.8: Composition of two processes connected by a pair of streams, exhibiting
deadlock, (a) process view, (b) multi-action interface automata view

multi-action interface automata reflects the cycle-by-cycle behavior of a composition

in hardware, whereas composition of conventional interface automata does not.

Deadlock and liveness for multi-action interface automata are defined identically

as for interface automata. The use of queue automata for stream buffering remains the

same. The basic idea of liveness analysis embedded in an abstract Park’s algorithm

remains the same.

Figure 5.8 shows an example composition that exhibits deadlock using multi-

action interface automata. Two processes are connected using a pair of streams x, y.

The producer A repeatedly consumes from primary input i and produces to x and

y. The consumer B alternately consumes from either x or y, and always produces to

output o. Composite execution should force A to run at half throughput, limited by

the alternating nature of B. Using multi-action interface automata composition, we

find that A is not enabled to simultaneously produce x and y, since B does not read

them simultaneously. The result is deadlock.

Figure 5.9 resolves the deadlock of Figure 5.8 by adding a depth-1 queue to buffer

stream x. We compute the composition of A, B, and queue Q in two steps, first
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composing A ⊗ Q, then (A ⊗ Q) ⊗ B. The composition behaves as expected, alter-

nating between processing buffered x (labeled x) and y, with consumption of input i

reduced to half throughput. This example also demonstrates that multi-action com-

positions can be very small, two states in this case, and substantially smaller than

the corresponding conventional interface automata compositions (e.g. compare the

multi-action Figure 5.9 to the single-action Figure 5.7, depicting very similar process

networks).

5.2.6.3 Statically Schedulable Dataflow

SDF and CSDF graphs have particularly well behaved compositions using multi-

action interface automata. An SDF actor [Bhattacharyya et al., 1996] is a process

with a single state (or equivalently, no state) and a single firing rule that consumes

and produces a static number of tokens. The automaton for that process has a single

state with a single, self-loop transition. Recall that our representation is limited to

consuming/producing one token per stream per firing, corresponding to single-rate

(unit rate) SDF actors. The composition of such automata, representing a homoge-

neous dataflow graph with no ideal delays, would have just one product state and

one transition. An ideal delay corresponds to a unit capacity stream buffer, and at

least one is required on any feedback loop to avoid deadlock. An SDF graph with N

ideal delays (implemented as depth-1 queues) would have an automata composition

with at most 2N states. However, in steady state operation, the buffers always have

an occupancy of one. A synchronized firing of all actors in the graph is balanced,

producing as many tokens as it consumes, borrowing and returning a token to every

buffer. Thus, the automata composition for an SDF graph with N ideal delays has

only one steady state7.

7An ideal delay in an SDF graph always has an initial token. However, TDF presently does
not support initial contents for stream buffers. Instead, a stream buffer corresponding to an ideal
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A CSDF actor [Bilsen et al., 1996] is a process with a loop of K states, each one

consuming/producing some subset of the actor’s streams. Again, our representation

is restricted to consuming/producing at most one token per stream per firing. A

composition of such CSDF actors, each having Ki states, will have a steady-state loop

of at most lcm({Ki}) states (the least common multiple of all Ki). The composition

may require stream buffering to realign tokens in time, as in the example of Figures 5.8

and 5.9. It may also include ideal delays, corresponding to more unit capacity buffers.

Nevertheless, the steady state behavior of the automata composition remains a loop

as above.

Our automata composition also recognize some statically schedulable behaviors

with state branchings. Consider an SDF actor that occasionally needs an extra cycle

to think. That behavior is represented by a data-dependent branch to a second state

that neither inputs nor outputs tokens. The I/O behavior of the actor has a static

ratio of inputs to outputs, so it is statically schedulable. An automata composition

involving this actor will reveal that no additional buffering is necessary. Whenever

the actor transitions to its second state, other actors connected to it simply stall.

Next, consider an actor that repeatedly evaluates one of two state sequences. Each

sequence consumes and produces the same number of tokens, but in a different order

and at different times. Again, the I/O behavior of the actor has a static ratio of inputs

to outputs, so it is statically schedulable. Our automata composition will discover

that small, statically sized buffers suffice to realign the tokens in time. Dynamic

dataflow is characterized by non-deterministic branches that yield a dynamic ratio

of inputs to outputs. For those cases, our automata composition will deadlock for

any finite buffer sizes. Unfortunately, our automata ignore data values, so they fail

delay must be initialized by an initial state of the stream producer, which emits the initial token.
Consequently, an SDF actor in TDF may need two states: an initialization state and a steady state.
The automata composition of such actors also has only two states: a product initialization state,
and a product steady state.
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Internal SFSM States Product States Using Queue Depths
Application SFSMs Streams Max Product 0 1 2
IIR 8 7 1 1 1 128 2,187
JPEG Decode 9 41 21 10,080 10,080 2.2 ×1016 3.7 ×1023

JPEG Encode 11 42 21 25,200 25,200 1.1 ×1017 2.8 ×1024

MPEG Encode IP 80 231 21 1.1 ×1031 1.1 ×1031 3.7 ×10100 1.7 ×10141

MPEG Encode IPB 114 313 21 6.3 ×1050 6.3 ×1050 1.1 ×10145 1.4 ×10200

Wavelet Encode 30 50 7 3.6 ×1016 3.6 ×1016 4.0 ×1031 2.6 ×1040

Wavelet Decode 27 49 6 1.1 ×1013 1.1 ×1013 6.4 ×1027 2.7 ×1036

Total 279 733

Table 5.1: Maximum sizes of whole application automata compositions

to recognize some statically schedulable compositions that contain data-dependent

branching. They cannot recognize that a counter-based loop has a fixed number of

iterations unless it is fully unrolled into a loop of states. Also, they cannot schedule

a BDF style if-then-else graph, which is well behaved because it controls multiple,

dynamic-rate actors with matching, boolean-valued tokens [Buck, 1993].

5.2.7 Efficient System Composition

System level liveness analysis involves the composition of every process and every

queue in the system. The resulting compositions may be very large, possibly too large

to process on a conventional, desktop computer. Table 5.1 estimates the maximum

size of product automata for the seven TDF multimedia applications from Chapter 4.

Using multi-action interface automata, each SFSM automaton has as many states as

its SFSM. The product automaton has a state count equalling, at most, the product

of SFSM state counts. That number may be trivially small, e.g. 1 for IIR, which

is a feed-forward SDF graph. It may also be intractably large, e.g. 1050 for MPEG

Encode IPB. The number of possible states gets even larger with stream buffering.

Every buffer slot infers another queue state, which in the product automaton, infers

a replication of the entire unbuffered composition. Using a depth-1 queue for every

stream yields up to 128 states for IIR, and up to 10145 for MPEG. Using a depth-2
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queue for every stream yields up to 2,187 states for IIR, and up to 10200 for MPEG.

The actual product automaton may be smaller after removal of unreachable states,

particularly if the process network contains large SDF or CSDF regions. Nevertheless,

the asynchrony provided by buffering always creates a state explosion, so buffer-rich

compositions tend to have 50%-100% of the maximum number of possible states.

A tractable, system level, liveness analysis can keep automata compositions small

in several ways: (1) keep stream buffers as small as possible, (2) partition the process

network into separately analyzed regions (divide and conquer), and (3) apply partial

analysis early to avoid fully building deadlocked compositions (branch and bound).

5.2.7.1 Keeping Buffers Small

Buffer sizes are chosen by the abstract Parks’ algorithm. Buffers initially have zero

capacity and are expanded whenever a liveness analysis indicates deadlock. Parks’

suggested always increasing the smallest full buffer by one. Identifying which buffers

are full in a particular deadlocked state may be done by marking the full state of

every buffer automaton and retaining that marking during automata composition.

Bufferlock usually involves a cascade of buffer overflows, originating at one buffer and

propagating upstream via back-pressure. Expanding any of the upstream buffers will

allow a process network to make some forward progress, but it will not resolve the

bufferlock. The bufferlock must be resolved at its point(s) of origin. Thus, a smarter

implementation of Park’s algorithm might try to identify an originating full buffer

and expand it first, even if it is not the smallest full buffer. One way to find an

originating full buffer is to start at an arbitrary full buffer and follow downstream

links through other full buffers as far as possible. The connection between full buffers

may be coincidental. That is, the cascade of overflows moving backwards from one

origin may reach a second, independent origin that was already full. Nevertheless,

resolving the origin furthest downstream will eventually reveal the other origin.
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5.2.7.2 Divide-and-Conquer

A useful technique for keeping automata compositions small is to partition the process

network into separately analyzed regions. We can apply the abstract Park’s algorithm

separately for each region to bound its stream buffers. The streams connecting those

regions remain unanalyzed, and consequently unbounded. They can be handled in

one of several ways:

1. Bound the stream using a different analysis.

One approach is to use topological properties. For example, bridge streams

require no buffering (more on this below). This suggests that process networks

should always be partitioned at bridge streams first.

2. Bound the stream using a programmer annotation. That is, let the user choose

a buffer bound.

3. Provide run-time buffer expansion for the stream. This approach requires addi-

tional hardware for bufferlock detection and buffer reallocation. It is impractical

on an FPGA or ASIC, but it is possible on a SCORE architecture.

A divide-and-conquer approach to liveness analysis requires assurance that com-

posing two live partitions will not introduce new deadlock. In general, this is not

possible. Composing a partition’s automaton with anything that has shared actions

(i.e. is connected via streams) can only restrict the automaton’s transitions. It may

leave some states with no enabled transitions, indicating to a deadlock. There is one

special case that is guaranteed to produce no deadlock—a single stream connection.

If the downstream process is not ready to consume, then the upstream process simply

waits for it to become ready. There is no other synchronization between them to cause

deadlock. No buffering is required, though the same reasoning holds if the stream

is buffered and the buffer is full—the upstream simply waits until the downstream
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drains one element from the buffer. The processes in question may be compositions.

A more precise proof follows for the interface automata view.

Theorem 5.2.3. Let P and Q be live, multi-action interface automata with one

shared action. Then P ⊗Q is also live.

Proof. Deadlock requires both P and Q to be stalled, so we prove that at least one

of them is always enabled to transition. Suppose P and Q share an action a, P is

in state p, and Q is in state q. If P has any enabled transitions not involving a

(∃a ∈ AP (p) s.t. a 6∈ a), then P can transition independent of Q, and there is no

deadlock. Likewise for Q. The only remaining case is if P and Q each have only one

enabled transition, and that transition involves a (AP (p) = ap, a ∈ ap, AQ(q) = aq,

a ∈ aq). In this case, P and Q transition simultaneously, so there is no deadlock.

Theorem 5.2.3 implies that every bridge stream in a process network requires

no buffering. A bridge is a graph edge whose removal would disconnect the graph

(forming P and Q of the theorem). Thus, a reasonable first step for efficient, system

level, liveness analysis is to partition the process network at bridge streams.

A similar result holds for any tuple of streams that may be merged to form a bridge

stream. Such streams may have been logically separated by a programmer for clarity

and convenience, but they should be remerged by a compiler before other analyses.

A tuple of streams may be merged if all of the following conditions hold:

• All streams are produced by the same process,

• All streams are consumed by the same process,

• Tokens are produced to all streams in synchrony,

• Tokens are consumed from all streams in synchrony.

For TDFPN, we can define synchronized production/consumption as follows. Streams

i, j are consumed in synchrony if: ∀rrr ∈ R, |πi(rrr)| = |πj(rrr)|. Streams i, j are produced
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in synchrony if: ∀rrr ∈ R, |πi(fO(rrr))| = |πj(fO(rrr))|.

5.2.7.3 Branch and Bound

A branch-and-bound approach to liveness analysis would attempt to discover deadlock

early, before a deadlocked composition has been built in its entirety. It can then

immediately move on to the next step of the abstract Parks’ algorithm. We consider

several ways to do that.

The liveness of an automata composition is determined by verifying that no path

of transitions exists from the initial state to any deadlock state. As soon as one path

is found, liveness analysis may terminate and return false. It suffices to build the

automata composition incrementally, along the path search. In fact, it suffices to

record only which product states were visited, not their transitions. A path search

may be performed forward or backwards. A forward search would start at the initial

state and build the composition along forward transitions, looking for deadlock states.

This approach has the advantage of never visiting unreachable states. A backwards

search would begin by identifying all deadlock states, including possibly unreachable

ones (by computing A(v) for every product state v). For each deadlock state, the

search would build the composition along backwards transitions, looking for the initial

state.

A composition of multiple automata is normally computed by repeated, pairwise

composition. However, this approach obstructs early detection of deadlock. Only

the final pairwise composition can be built incrementally around a path search. The

intermediate compositions must be built in their entirety in order to compute the

final composition. It would be useful to discover something about deadlock or live-

ness during one of the intermediate compositions, and avoid having to compose all

pairs. However, as we noted above, liveness of an intermediate composition does not

guarantee liveness of the next composition (unless the pair is connected by a single
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stream—Theorem 5.2.3). Similarly, a reachable deadlock state in an intermediate

composition may not be reachable in the next composition. Hence, it seems that

liveness analysis must be deferred until the final pairwise composition. There are two

ways to apply partial liveness analysis earlier: (1) avoid pairwise composition, com-

puting the multi-way composition directly and applying the path search immediately,

or (2) cull deadlock out of the intermediate pairwise compositions.

Direct Multi-Way Composition. A composition of multiple automata can,

in principle, be computed directly and incrementally around a path search. Pairwise

composition is associative, so the multi-way composition is unique. The definition of

multi-way product states is obvious. Transitions may be tested at each product state

as follows, generalizing the definition of TP⊗Q. A transition of any individual compo-

nent automaton is accepted if it contains no shared actions. A simultaneous transi-

tion of any pair of component automata is accepted if the two component transitions

share no actions with other components. Similarly for higher tuples of component

automata. These tests seem to require computing shared action sets for all possible

subsets of component automata; those shared action sets may be memoized for use

in other product states.

Culling Reachable Deadlock. De Alfaro and Henzinger [de Alfaro and Hen-

zinger, 2001] suggest a way to cull intermediate pairwise compositions. Their original

approach is based on illegal states, but we adapt it to deal with our deadlock states.

A composition P ⊗Q is considered compatible if there exists an environment (i.e. a

next composition) that prevents P ⊗Q from reaching its deadlock states. An envi-

ronment can only constrain the inputs and outputs of P ⊗Q. If P ⊗Q can reach a

deadlock state via internal transitions only, then clearly no environment could prevent

its deadlock. To represent non-deadlocking behavior, the composition is culled by re-

moving any states that can reach deadlock via internal transitions. The remaining

states, termed compatible states, represent cases where an environment might pre-
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vent P ⊗Q from reaching deadlock. Those states can then undergo further, pairwise

composition. If deadlock is discovered in a subsequent composition, it would indicate

that either (1) the compatible states were insufficient in the actual environment, or

(2) an independent deadlock exists in the actual environment. De Alfaro and Hen-

zinger prescribe the most optimistic approach, which is to evaluate the entire chain

of intermediate, pairwise compositions, and to give each one the chance to steer prior

compositions away from their deadlock. Thus, every intermediate, pairwise composi-

tion is computed and then culled. If any culled composition is empty, then deadlock

is unpreventable, and the analysis terminates. Otherwise, a non-empty, final, culled

composition has deadlock free schedule and can be safely implemented8.

The culling approach provides two forms of savings for a liveness analysis. First,

the culling keeps intermediate compositions small. Second, the analysis terminates as

soon as any intermediate, pairwise composition is culled to empty. At that point, the

abstract Parks’ algorithm can attempt buffer expansion. Buffers eligible for expansion

include any full buffers from culled deadlock states.

The culling approach has the advantage of recognizing some cases of local deadlock.

Parks’ algorithm for dynamic scheduling responds only to total system deadlock,

where all processes are stalled. Likewise, our abstract interpretation of deadlock as a

product state with no enabled transitions also corresponds to total system deadlock.

These approaches miss any case where a subgraph of the process network deadlocks,

while another subgraph continues to run. A culled composition represents composed

behavior that prevents local deadlock in prior compositions. If a culled composition

is empty, it indicates that any of the local deadlocks in prior compositions would be

possible in the unculled composition.

8A culled composition can be implemented verbatim as a single, large SFSM. Implementing the
composition as separate SFSMs (one per process) does not strictly enforce non-entry into culled
states, so it may yet permit reaching deadlock states.
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5.3 Stream Aware Placement

Process networks are naturally robust to long interconnect delay. Their streams

may be pipelined across long distances, yet their behavior remains deterministic. In

conventional design flows, communication pipelining is fixed in RTL and becomes a

constraint for placement. In Chapter 3, we proposed an approach for choosing stream

pipeline depths after placement, to match actual interconnect delay. That approach

provides some improvement in performance and area compared to pipeline depths

fixed in RTL. However, a conventional placer does not know that stream-related wires

may be pipelined, so it misses certain opportunities for optimization. A conventional

placer is usually timing driven and will strive to keep all register-to-register paths

within timing constraints. It does not know that a feed-forward stream can violate

the target clock period and be pipelined without degrading system throughput. That

freedom might allow the placer to push the stream endpoints apart and bring other,

more timing-critical circuits together to improve the clock rate. Nor does the placer

know that pipelining a stream feedback loop may degrade system throughput, or it

may not, depending on the nature of the feedback. Non-critical stream feedback loops

can actually be pipelined to tolerate placement across large distances.

In this section, we discuss how to extend placement with knowledge of pipelin-

able streams. Our basic approach is to reuse the existing notion of net criticality,

which denotes to a placer the need to keep a connection short. Given a process net-

work, we build a throughput model and use it to derive net criticalities. A similar

approach works for circuit partitioning, which typically adds interconnect delay to

inter-partition connections (e.g. partitioning across multiple chips, across MegaLABs

in an Altera APEX FPGA, or across SCORE pages). The conversion of throughput

information into net criticalities has been proposed by Singh and Brown [Singh and

Brown, 2002] for placing sequential circuits on FPGAs. We adapt their approach
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to deal with process networks. To do so, we derive throughput models for process

networks.

5.3.1 Adding Throughput Awareness to a Placer

Timing driven placement is based on a notion of slack time. To meet a target clock

period φ, the total combinational delay
∑

i di along any register-to-register circuit

path must be at most φ. The slack of a path is the delay that can be added in

interconnect without exceeding φ: slack = φ −
∑

i di. A placer can use slack to

prioritize which components to keep proximal. Paths with high slack can cross large

distances, whereas paths with small slack cannot. In VPR (Versatile Place and Route)

[Betz and Rose, 1997] [Betz et al., 1999], the criticality of a net ranges from 0 to 1

and is computed as: crit = 1 − slack/φ. A net refers to a route between circuit

components.

Retiming is a circuit transformation that moves registers, and which can improve

the attainable clock period by equalizing delays among register-to-register paths [Leis-

erson et al., 1983]. Combining retiming with placement provides some means to ad-

dress the fact that interconnect delays are not known until placement. Singh and

Brown [Singh and Brown, 2002] propose making a placer aware of the additional tim-

ing slack enabled by post-placement retiming. They call that the cycle slack. With

retiming, the attainable clock period is limited by delay on circuit cycles (feedback

loops). Retiming is not able to add registers to cycles, but it is able to redistribute

the registers to equalize combinational delay. For a given cycle c containing N reg-

isters and
∑

i di combinational delay, the attainable clock period with retiming is

φc = (1/N)
∑

i di, called the delay to register ratio (DRR). The attainable clock pe-

riod φ of the entire circuit is the maximum DRR (MDR) over all cycles. For a given

clock period φ, the slack available on a cycle with retiming can be thought of as
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follows. Each register on the cycle adds φ to the cycle’s time budget. Each com-

binational element subtracts di from the cycle’s time budget. The time left over is

Nφ−
∑

i di. The average time left over for each of the N register-to-register paths is

φ− (1/N)
∑

i di, the so-called cycle slack. If a given net is on several cycles, then its

available slack is the minimum cycle slack of all such cycles. The cycle slack of a net

can then be turned into a net criticality9, e.g. for VPR: crit = 1− CycleSlack/φ.

A similar analysis of cycle throughputs is used in Latency Insensitive Design

(LID) [Carloni and Sangiovanni-Vincentelli, 2000] for composing synchronous mod-

ules with pipelined interconnect. A synchronous module contains internal registers

and is assumed to produce valid data on every clock cycle. Inter-module wires may

be automatically pipelined to cross long distances, but those pipeline registers in-

troduce bubbles into the otherwise valid computation. Bubbles propagate around a

circuit like data, but they represent nil data and a consequent loss of throughput.

Carloni and Sangiovanni-Vincentelli show that the number of bubbles in a feedback

cycle remains constant during circuit operation. This property is similar to the one

in retiming whereby the number of registers in a feedback cycle remains constant, as

both properties are based on the splitting/joining of movable elements (bubbles or

registers) across fanouts/fanins. A feedback cycle with M modules and N pipeline

registers produces valid data, on average, every (M +N)/M clock periods. That value

9 Singh and Brown describe two practical adaptations for computing net criticalities for VPR.
They tune criticalities as: crit = 1 − β · CycleSlack, where β is chosen adaptively so that no more
than 5% of all nets have a criticality over 0.9. They also approximate the computation of cycle
slack. A net may belong to arbitrarily many cycles, and finding the minimum cycle slack of all such
cycles is difficult. Instead, they advocate analyzing a random subset of such cycles. The cycle slack
of a cycle C can be computed as the total edge weight along C in the cycle rate graph, a graph
derived from the retiming graph by replacing each edge weight w(euv) with a slack contribution
weight, w′(euv) = φw(euv) − d(euv) − d(v), where d(v) and d(euv) are the combinational delays of
circuit element v and the route of euv. The available slack of net euv is the minimum cycle slack
of cycles containing euv, but it may be approximated from a random subset of cycles as follows.
Choose a random node s. Compute the minimum cycle slack of cycles containing s and euv as:
w′(v → s) + w′(s→ u) + w′(euv), where x→ y denotes the shortest (least weight) path from x to y
and w′(x→ y) denotes its total edge weight. Repeat for several random nodes s and take the least
result.
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is the ratio of total data to valid data on the cycle, termed the cycle mean (CM).

The system throughput is constrained by the slowest cycle and is equivalent to the

maximum cycle mean (MCM)10. We note that LID’s CM and MCM are analogous to

Singh and Brown’s DRR and MDR, with φ factored out. The LID literature does not

address how to tune a placer for minimum throughput degradation, i.e. minimum

MCM. Nevertheless, it is possible to apply Singh and Brown’s approach, defining

cycle slack as (MCM − CM) periods, and converting it into a net criticality for an

inter-module wire as: crit = 1− ((MCM− CM)/MCM).

5.3.2 Process Network Throughput Models

The LID model represents a particularly simple process network, where every process

consumes and produces a single token per stream per firing. A similar throughput

model can be applied to more general process networks, where token rates may be

non-unit and non-static. We demonstrate this by (1) modeling the throughput of

single-rate SDF, and (2) transforming other process network models into SDF, either

by known techniques or by approximation. Where ever throughput and cycle slack

can be defined, net criticalities can be derived for a placer.

5.3.2.1 Single Rate SDF

In single-rate SDF (SRSDF), each actor has a single firing rule that consumes and

produces one token per stream per firing. All actors are stateless except for the ideal

delay element, for whom each firing produces the value consumed in the previous

firing. To evaluate the graph, tokens are conceptually propagated from ideal delays,

10 The maximum cycle mean (MCM) problem is well known in the literature, dating back at least to
Karp’s Algorithm [Karp, 1978]. In a weighted edge graph, the mean of a cycle C is its weight divided
by its length: λ(C) =

P
e∈C w(e)

|C| . The maximum cycle mean of a graph G is: λ(G) = maxC∈G λ(C).
For LID’s computation of MCM as throughput, w(e) denotes pipeline delay, and would be equal to
the pipeline depth of inter-module route e plus one for the module at the beginning of e.
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Figure 5.10: SRSDF graph with throughput 4, limited by cycle {AXCY }

through actors, and back to ideal delays. A direct hardware implementation would

realize each actor as a combinational element and each ideal delay as a D flip-flop

with initial value. A more efficient hardware implementation would add pipeline

registers at actor outputs or on long distance streams. Most such pipeline registers are

uninitialized and represent bubbles in a LID-style throughput analysis. However, they

may be configured to hold initial tokens, like ideal delays. A cycle C containing M

tokens and N pipeline delays produces a valid token, on average, every TC = (M/N)

clock periods. The graph produces a valid token, on average, every T = maxC{TC}

clock periods. We dub this the token period, in analogy to the clock period. The

cycle slack in periods is (T − TC). A net criticality can then be computed as: crit =

1− ((T −TC)/T ). Our throughput analysis is a pipelined generalization of Singh and

Brown’s clock rate analysis, with our T , TC , and (T − TC) being directly analogous

to their φ, φc, and CycleSlack.

Figure 5.10 shows a sample SRSDF graph with three base cycles. Suppose the

implementation provides a single level of pipelining between actors, and that level

can hold an ideal delay value (e.g. an enabled register queue from Chapter 3). Then

we have the following cycle throughputs in clock periods per token: T{AB} = 2,

T{CD} = 2, T{AXCY } = 4, T = maxC{TC} = 4. The cycle slack of cycle {AB} is

two periods, so a placer may add up to two levels of interconnect pipelining to its
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nets without degrading system throughput. Likewise for cycle {CD}. However, cycle

{AXCY } is critical and has zero slack.

Ideal delays represent initial tokens in stream buffers. They can be inferred from

a process network description such as TDF in two places. First, there may be a spec-

ification of initial stream contents. Second, process initial states may inject initial

tokens into streams. A comprehensive recovery of initial tokens would need to dis-

tinguish initial states in the state flow graph of each process and, possibly, simulate

their interaction.

5.3.2.2 Multi-Rate SDF

Multi-rate SDF (MRSDF) differs from single-rate SDF (SRSDF) in that an actor

firing may consume or produce more than one token. Connecting actors with unequal

rates requires that some actors fire more often than others. Non-uniform firing rates

invalidate using a LID-style throughput analysis on the original graph. However, it is

possible to unroll an MRSDF graph into an equivalent SRSDF graph, and apply the

analysis there. We can then derive slacks and criticalities for the original MRSDF

graph.

The steady state behavior of an MRSDF graph is captured by a balanced schedule,

wherein a repeating pattern of actor firings returns the graph to its original state,

leaving the same number of tokens on the same streams. The number of firings of

each actor in a balanced schedule may be found by solving balance equations [Bhat-

tacharyya et al., 1996]. For each stream A→ B, assuming A produces NA tokens per

firing, and B consumes NB tokens per firing, we pose the equation: qANA = qBNB.

Quantities qA and qB represent the number of firings of A and B in a balanced sched-

ule, and the equation represents a balance of production and consumption in the

stream A→ B. The set of equations for a graph may be represented and solved as an

eigenvector problem: Γqqq = 000, where qqq is the repetitions vector, and Γ is the topology
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matrix (Γi,j equals the number of tokens-per-firing added to stream i by actor Aj,

positive for production and negative for consumption) SDF theory provides liveness

conditions under which a solution qqq exists and is unique, within a scaling factor. Scal-

ing is permissible, because any repetition of a valid schedule is also a valid schedule.

We are normally interested in the least integer solution of qqq.

An MRSDF graph may be unrolled into an acyclic precedence graph (APG) that

represents the token flow in one instance of a balanced schedule [Lee and Messer-

schmitt, 1987a]). The precedence graph contains qA instances of each actor A, repre-

senting firings, and connecting to instances of A’s neighbors in correspondence with

token flow. Tokens conceptually flow from output ports of ideal delays, through actor

instances, to input ports of ideal delays. The precedence graph can be interpreted

as an SRSDF graph if ideal delay port pairs are merged to form feedback cycles.

Williamson [Williamson, 1998] proposes mapping the equivalent SRSDF graph di-

rectly to hardware, with concurrent realizations of all actor instances. Our synthesis

methodology of Chapter 3 implements the instances of an actor A not concurrently

but serially, in one hardware realization of A. We can represent this serialization by

adding precedence edges between instances of A (often, these edges are superfluous,

as serialization is already implied by other dataflow edges).

The equivalent SRSDF graph may used to reason about the effect of interconnect

delay on throughput. Consider clustering the instances of each actor A, to represent

to a placer that those instances are co-located. Original streams A → B may now

appear replicated between clusters, connecting instances of A and B. They will be

merged later. If a placer makes A and B distant, then all replicated streams between

A and B will incur the same interconnect delay. If those streams constitute a feedback

cycle between A and B, then the cycle will incur interconnect delay multiple times,

as its path crosses back and forth between multiple instances in the different clusters.

The multiplicity of a replicated stream will be used to scale its apparent cycle slack
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Figure 5.11: MRSDF graph (top) and equivalent SRSDF graph (bottom) with throughput
6, limited by cycle {A ↑2 CDC ′ ↓2}

in the computation of net criticality.

We now collapse the equivalent SRSDF graph to match the structure of the orig-

inal MRSDF graph, computing slacks and criticalities in the process. We first de-

termine cycle slacks for all streams in the SRSDF graph. We merge replicated actor

instances. We merge replicated stream instances, remembering a stream’s multiplic-

ity, and taking its new cycle slack to be the minimum slack of its replicants. Finally,

we compute a net criticality for the merged stream. Suppose a given stream has

multiplicity k and a cycle slack of (T − TC) periods after pipelining actors. Then a

VPR net criticality might be computed as: crit = 1− ((T − TC)/T )k.

Figure 5.11 shows a sample MRSDF graph and its equivalent SRSDF graph with

actor clustering. We do not show serialization edges, as they are unnecessary in this

case. Actors ↑2 and ↓2 denote up-sampling and down-sampling by a factor of two,
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respectively. Suppose the implementation provides a single level of pipelining between

actors, and that level can hold an ideal delay value (e.g. the enabled register queue

from Chapter 3). Then we have the following cycle throughputs in clock periods per

token: T{AB} = 2, T{A↑2C↓2} = 4, T{A↑2CDC′↓2} = 6, T{CDC′D′} = 4, T = maxC{TC} =

6. The cycle slack of cycle {AB} is 4 periods, so a placer may add up to four levels of

interconnect pipelining to its nets without degrading system throughput. However,

all other nets are critical. Consider the original stream C → D, which is replicated

with a multiplicity of two. In the SRSDF graph, stream C ′ → D′ has a cycle slack of

2 periods from cycle {CDC ′D′}. Stream C → D has a cycle slack of zero from cycle

{A ↑2 CDC ′ ↓2}. Consequently, the slack of stream C → D after merging replicated

streams is also zero.

5.3.2.3 Average Rate SDF

A dynamic rate dataflow graph can be modeled as an MRSDF graph with average

consumption/production rates. For example, an actor might, on average, consume

0.5 tokens per firing and produce 0.75. Average consumption/production rates may

be collected empirically in simulation or derived by compiler analysis. They are

independent of any schedule. Balance equations may be posed with non-integer values

for tokens per firing, NA. However, the resulting firing counts qqq may be related by

irrational ratios and thus have no integer solution. To apply MRSDF-to-SRSDF

unrolling, we need integer rates NA and integer firing counts qqq. We propose an

approximate unrolling, as follows.

Consider an average-rate MRSDF graph G with repetitions vector qqq. Choose a

scaling factor α and form a graph G′ representing α firings of G. Each actor A′ ∈ G′

represents α firings of the corresponding actpr A ∈ G, with consumption/production

rates: NA′ = αNA. This scaling must also be done for ideal delays, forming chains

thereof. Graphs G and G′ have the same repetitions vector, since any repetition of
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a balanced schedule is also balanced (the balance equations, Γqqq = 000 and (αΓ)qqq = 000,

have the same eigenvector qqq). Now form an integer-rate graph G′′, where every actor

A′′ ∈ G′′ has integer production/consumption rates NA′′ = bNA′c. We unroll G′′ into

an equivalent SRSDF graph inexactly. Graph G′′ may have no balanced schedule due

to its truncated production/consumption rates, but we adopt qqq as an approximation.

Choose an arbitrary number of schedule repetitions to unroll, and obtain truncated

firing counts. One way to do this is to normalize qqq such that its greatest component

equals one, then use the firing counts qqq′′ = bαqqqc. Form the acyclic dependency graph

(APG) of G′′ by simulating a schedule of qqq′′ firings. The APG must now be closed

to form an equivalent SRSDF graph, but the actors at its output may be the wrong

ones to connect in feedback. We visit APG nodes in reverse topological order from

the outputs. An instance A′′
i ∈ APG of an actor A′′ ∈ G′′ that fed an ideal delay in

G′′ can be connected to the corresponding ideal delay at the APG input, thus closing

a feedback loop. An instance A′′
i ∈ APG that does not correspond so is culled. The

resulting, approximate SRSDF graph can be analyzed for throughputs, slacks, and

criticalities in the normal way.

5.3.2.4 CSDF, TDFPN

The average rate SDF model can estimate, to first order, the behavior of process

networks with sequenced (stateful) actors and/or dynamic rates. However, it fails to

capture the actual, cycle-by-cycle behavior of stateful processes. The cycle-by-cycle

schedule of consumption and production determines when pipeline bubbles appear

and when they force process stalls. Analyzing that level of behavior would yield more

accurate throughputs than those based on average rates. Our throughput analysis can

be extended to processes with static sequences of states, such as cyclo-static dataflow

(CSDF) [Bilsen et al., 1996], since they can be unrolled into an equivalent SRSDF

graph. A cyclo-static actor is defined by a repeating sequence of k firings, each one
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consuming and producing a static, but possibly different, number of tokens. Its firings

appear in the equivalent SRSDF graph as actor instances, chained by precedence

edges. In principle, it should be possible to represent actors having dynamic state

flow, such as TDFPN SFSMs, and to unroll them in approximation. A possible

approach is to build a one-hot representation of each SFSM, with a boolean activation

token for every state. Such a representation could be built using dynamic actors from

boolean controlled dataflow (BDF) [Buck, 1993] or integer controlled dataflow (IDF)

[Buck, 1994] and unrolled as an average rate SDF graph.

5.4 Process Pipelining

In Section 4.4.2, we proposed an approach for choosing logic pipelining depths for

processes to optimize the system clock rate. That approach does not take into account

that pipelining a process in a stream feedback loop may degrade system throughput.

The cycle slack model introduced in Section 5.3.2 provides a mechanism for identifying

which processes should not be pipelined. The cycle slack of a process is the minimum

cycle slack of all cycles to which the process belongs. Equivalently, it is the minimum

cycle slack of the process’s adjacent streams. A process with a cycle slack of s > 0

periods may accomodate bsc levels of additional pipelining without degrading system

throughput. A process with zero cycle slack cannot accommodate pipelining without

degrading tokens-per-clock-period throughput. However, pipelining it may improve

the clock period and thus improve the overall, tokens-per-second throughput. In this

case, pipelining is warranted only if the improvement in clock period outweighs the

loss of per-period throughput. Consider a zero-slack process A in a system with

throughput T , measured in clock periods per token. Adding d pipeline levels to A

yields a throughput degradation of (T + d)/T and a given clock speedup. Then

pipelining is warranted if: speedup > (T + d)/T . This condition can be added as a
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Figure 5.12: Process network with (a) unbalanced and (b) balanced pipeline delay on
reconvergent paths

termination condition for Algorithm 4.1. That is, the algorithm should add one level

of pipelining to the slowest process until either (1) the pipelined process becomes

slower instead of faster, or (2) the throughput degradation exceeds the clock speedup.

A process in a feed forward stream topology may be pipelined freely, having an

effectively infinite cycle slack.

5.5 Pipeline Balancing

If pipeline delay on reconvergent paths is not balanced, then data may arrive mis-

matched at the point of reconvergence. The consumer would have to stall, waiting

for a matched input set, and throughput would be lost. In sequential circuits, such

mismatches are handled by adding registers to equalize pipeline delays. In process

networks, the same goal can be achieved by adding buffering capacity. Balancing by

adding buffering has several advantages to adding delays. It may be free if every

stream buffer must be allocated to some quantized capacity. For example, the SRL16

based queue from Section 3.4.2 has the same area up to capacity 16. In such cases,

adding buffering may be performed after place and route by setting queue parameters.

Also, adding buffering may have better average delay and average throughput than

adding delays if dynamic rates are involved.

Figure 5.12(a) shows an example process network with unbalanced pipeline de-
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lays. Suppose processes A, B, C are single-rate SDF actors, implemented as combi-

national cores, with output pipelining in unit-depth, enabled register queues (from

Section 3.4.1). The reconvergent paths A-B-C (top) and A-C (bottom) have mis-

matched pipeline delays of two and one clock periods, respectively. With unit-depth

buffers everywhere, each firing of A must wait for C to have consumed its previous

input set, which means waiting an extra period for B. The best hardware schedule

is only half throughput, forever alternating between firing B, then firing C together

with the next A. Nevertheless, this is a feed forward network, so it should be able

to operate at full throughput. We can balance the paths by adding a second buffer

slot to path A-C (bottom), as in Figure 5.12(b). With two buffer slots on either

path, the process network can fire at full throughput. In principle, it is not necessary

to add pipeline delay to achieve balance. We can either expand buffer qD to two

elements (adding no delay) or cascade it with a second, unit-depth buffer q′D (adding

unit delay). The latter configuration would be preferred if qD were intended for logic

relaying and retiming, so as not to interfere with it.

We formulate pipeline balancing as a two phase process: (1) retime to determine

where buffer capacity is needed, and (2) allocate buffers at those locations. Buffer

allocation is normally possible only before place and route. After place and route,

it may be possible to expand some buffers by configuration specialization, assuming

those buffers had been allocated but restricted to less than maximum size. Otherwise,

buffer reallocation would require an iteration of place and route.

To determine where buffer capacity is needed for balance, we use a form of ar-

chitecturally constrained retiming. Retiming is a circuit transformation that moves

registers in a sequential circuit. It was first introduced by Leiserson, Rose, and Saxe

[Leiserson et al., 1983] for improving system clock rate by balancing combinational

delay among all register-to-register paths. Retiming naturally maintains a balance of

register delays on reconvergent paths, since it replicates a delay when moving it across
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a fanout, and it merges delays when moving them (in unison) across a fanin. The for-

mulation of retiming as a constraint satisfaction problem permits adding constraints

to require that register delays be moved into particular locations in the circuit. In

our case, those locations will correspond to logic and interconnect pipeline registers

and stream buffers, whose allocation is mandated by other analyses (place and route,

etc.). As retiming moves delays into those locations, it will naturally move balancing

delays into other paths.

We reinterpret register motion as token flow, and we adapt retiming to balance

pipeline delays in a process network. This interpretation assumes that every process

is a single-rate SDF actor, firing at every clock period, and always consuming and

producing one token per stream. This is a conservative but correct approximation for

dynamic rate process networks, provided they consume and produce no more than

one token per stream per firing. For generality and improved accuracy, the analysis

can instead be applied to a representative, single-rate SDF graph derived by unrolling

the process network, as described in Section 5.3.2.

5.5.1 Retiming

Retiming [Leiserson et al., 1983] is formulated as a constraint satisfaction problem on

the lag ri of each combinational node i. Every node begins with a lag ri = 0. Moving

a register delay backwards across a node makes it evaluate one cycle later, increasing

the lag by one. Moving a register delay forwards across a node makes it evaluate one

cycle earlier, decreasing the lag by one. For convenience, the circuit is modeled as a

retiming graph, where every node is a combinational component, and every edge is a

two-terminal net weighted by the number of register delays on that net. Let wi(e) and

w(e) denote the number of delays on edge e before and after retiming, respectively.

On a given edge eu,v, the difference in endpoint lags indicates the number of delays
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moved into that edge during retiming: w(eu,v) − wi(eu,v) = rv − ru. The number of

delays on each edge must be non-negative: w(eu,v) ≥ 0. Combining these two relations

yields the lag constraints: w(eu,v) = (rv − ru + wi(eu,v)) ≥ 0 ∀eu,v. Circuit retiming

for optimizing clock rate involves additional constraints to ensure that combinational

delays meet the target clock period. However, those constraints are not necessary for

pipeline balancing, where we ignore combinational delay altogether. Retiming also

requires that every cycle in the graph have at least one delay. However, this can be

verified independently, since retiming cannot change the number of delays in a cycle.

Architecturally constrained retiming [Singh and Brown, 2001] is implemented by

adding constraints of the form: ku,v ≤ w(eu,v) ≤ k′u,v. Such constraints indicate the

allowable number of delays on an edge. An edge corresponding to a net that cannot

be pipelined requires: w(e) = 0. An edge corresponding to a single pipeline delay

requires: w(e) = 1. An edge corresponding to a buffer of up to 16 elements requires:

0 ≤ w(e) ≤ 16. An unconstrained edge may retime to use an arbitrary number of

delays, for which new buffering resources would need to be allocated.

The constraint system described above is a special case of integer programming

with known, polynomial time solutions. All constraints are of the form: rv − ru ≤ k.

Efficient solutions for two-variable integer programming include [Kannan, 1980] and

[Feit, 1984]. In addition, it is possible to solve the system in polynomial time while

optimizing a cost function that is a linear combination of lags ri. A typical use is to

minimize the total number of registers,
∑

e w(e), using the substitution: w(eu,v) =

rv−ru +wi(eu,v). Efficient solutions for the constrained optimization problem include

the mixed integer-linear programming (MILP) approach of Leiserson et al. [Leiserson

et al., 1983] and simplex / convex hull approaches. Retiming for pipeline balancing

is simpler than conventional circuit retiming, since it does not involve constraints on

non-integer, combinational delays. Our problem is also simplified because it need not

consider register initial values, register enable, or register set/reset.
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5.5.2 Feed-Forward Pipeline Balancing

Our interpretation of retiming for process networks equates each register delay with

a buffer slot for a token. Architecturally constrained retiming moves tokens from

arbitrary initial locations to locations where buffering is required or available. For

convenience, a stream can be elaborated in the retiming graph into a chain of edges,

each representing a different kind of buffering. Logic relaying, logic pipelining, and in-

terconnect pipelining denote required buffering in D flip-flops, generating constraints

of the form: w(e) = L(e), w(e) = Wp(e). Interconnect relaying denotes buffering of

at least one and at most two in each relay station: Wr(e)/2 ≤ w(e) ≤ Wr(e). An

SRL16 based stream queue denotes buffering of 1 to 16: 1 ≤ w(e) ≤ 16.

Tokens can be retimed from primary inputs forward, or from primary outputs

backward. A convenient way to represent this is to leave primary I/Os unconstrained

and allow retiming to add as much lag as necessary. Formally, this can be done by

constraining a single, reference I/O to have zero lag and to retime everything else for

minimum delay. This approach differs from traditional circuit retiming, which ties

all primary I/Os to a common “host” node, to force them to retime synchronously,

and to prevent modifying input-to-output latencies. There is no requirement of I/O

synchrony or latency preservation in process networks, since every I/O is a stream

with independent flow control. Nevertheless, it is possible to constrain particular

streams to retime synchronously, the designer wishes it.

Retiming from primary I/Os is, in general, sufficient only for pipelining feed-

forward streams. This is a consequence of the property that retiming cannot change

the number of register delays in a feedback cycle. Retiming cannot push new tokens

into a cycle, so it cannot help an under-buffered cycle satisfy its buffering constraints.

To avoid posing an unsatisfiable retiming problem, constraints associated with feed-

back loops should be hidden from retiming altogether, e.g. by collapsing each strongly
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connected component into an individual node. The remaining retiming problem bal-

ances only feed-forward streams. Unfortunately, leaving feedback streams unbalanced

may incur an otherwise avoidable loss of throughput. In the next section, we propose

an approach for balancing feedback cycles by exposing retimable tokens within them.

5.5.3 General Pipeline Balancing

Pipeline balancing by retiming involves pushing tokens from initial locations into

buffer locations. Pushing tokens from primary I/Os is insufficient, because it cannot

push new tokens into feedback cycles. Instead, we must expose initial token locations

directly within feedback cycles, and in sufficient number. Initial tokens may be iden-

tified from a program description either as initial buffer contents or as tokens emitted

in the initial state(s) of each process. However, there may be insufficiently many

such tokens to satisfy the buffering constraints of a feedback cycle. This mismatch

indicates that the feedback cycle will operate at less than full throughput—a small

number of tokens will propagate around a larger number of buffers, and the output

buffer(s) of the feedback cycle will not have a valid token at every clock period. If

the network had a known, static throughput of T periods per token, then we could

model the schedule of those tokens by c-slowing the network by T , i.e. converting

each token into a chain of c = T tokens, treating the first as valid and the remaining

T − 1 as bubbles. These tokens can then be retimed to satisfy buffering constraints.

Any buffer retimed to hold b balancing delays would, in practice, need only db/T e

buffer slots. We develop and generalize this interpretation of retiming for general

process networks.

In Section 5.3.2 we describe how to unroll a process network into a representative,

single rate SDF graph, and how to find its throughput T . The representative graph for

a dynamic rate process network is based on average consumption/production rates,
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so we have only its average throughput T . We can retime this graph to obtain buffer

sizes that are balanced on average. Deviation from the average rates might lead to a

temporary pipeline imbalance (under-buffering), but the effect on average throughput

would be small. The effect of such deviations might be hidden by a small, judicious

increase of buffer sizes beyond the prescribed averages.

We apply pipeline balancing to a process network as follows. Form the equiva-

lent, average rate SDF graph G. Find its throughput T in clock periods per valid

token. Form a retiming graph for pipeline balancing of G. Replicated streams in G

(connecting unrolled actor instances) are given identical buffering constraints. Prece-

dence edges are given a constraint: w(e) ≥ 1, indicating that the endpoints are not

concurrent. Apply a c-slow transformation with c = T . The c-slow transformation,

initially proposed by Leiserson et al. [Leiserson et al., 1983], converts every register

delay into a chain of c delays, comprising c independent and non-interacting sets of

data. In our interpretation, one of these sets represents valid tokens, and the remain-

ing T − 1 sets represent bubbles. Now retime to satisfy buffering constraints. Every

edge representing a pipeline delay will have been satisfied with w(e) = k, regardless of

stream replication. Every edge representing a balancing buffer will have accumulated

a certain number of delays, but only the delays corresponding to valid tokens require

buffering capacity. A non-replicated stream whose edge has b delays will hold at most

db/T e valid tokens. A replicated stream may hold valid tokens on some or all of its

replicants. To distinguish valid and bubble tokens, we assign to each token a label

equal to its delay distance from an arbitrary reference input, modulo T . Valid tokens

will all have an identical label t (0 ≤ t < T ). Nevertheless, execution makes them

advance in unison through every t, so we must consider every t when counting valid

tokens. Suppose each edge em of a replicated stream has wm
t tokens of label t. Then

the stream buffer will contain at most: maxt{
∑

m wm
t } valid tokens.
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5.6 Serialization

Multi-rate and dynamic rate systems typically have components operating at different

frequencies, with some components frequently idle. A designer may with to serialize

the implementation of such components to save area, or to improve the component’s

clock rate. For example, an infrequent adder may be implemented in byte-serial,

nibble-serial, or bit-serial fashion. The serialized adder will be smaller but slower.

Similarly, a low frequency stream may be serialized to transmit each token as a

sequence of narrower tokens over correspondingly fewer wires. Serialization affects

the delay, firing rate, and/or throughput of a serialized component. It must be be

applied judiciously to avoid degrading the system throughput. We can use the slack

and activity models from Section 5.3.2 to guide which components should be serialized

and by how much.

Serializing a process by a factor α is equivalent to converting a single state into

a sequence of α states. The transformation increases firing rate by a factor α and

reduces cycle slack by α periods. We can verify whether the transformation degrades

system throughput as follows. Suppose the representative SDF graph has a repetitions

vector qqq, normalized so that its greatest component is one. Equating a firing with a

clock period, the normalized qqq represents actor activity, i.e. the probability of firing

per clock period. The increased activity of a serialized actor should not exceed one

firing per period. An actor A can be serialized by a factor α without degrading system

throughput if: αqA ≤ 1 and CycleSlackA ≥ α. If serialization is applied only to a

particular state whose probability is p (per firing), then the transformation increases

average firing rate by a factor pα and reduces cycle slack by pα periods. Thus, a

probability-p state of an actor A can be serialized by a factor α without degrading

system throughput if: pαqA ≤ 1 and CycleSlackA ≥ pα.

A low frequency stream may be serialized using a time-division multiplexing
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(TDM) scheme. A stream serialized by a factor α transmits each token as a se-

quence of α sub-tokens, each sub-token having 1/α as many bits. The serialized

stream may then be implemented with 1/α as many wires (not accounting for the

overhead of flow control). The transformation increases token frequency by α and

reduces cycle slack by α periods. Suppose the representative SDF graph has a repe-

titions vector qqq, normalized so that its greatest component is one, to represent actor

activity. Equating a firing with a clock period, the frequency of a stream A → B,

in tokens per period, is: f = qANA = qBNB, where NA is the average number of

tokens produced to the stream by A per firing, and NB is the average number of

tokens consumed from the stream by B per firing. If this frequency is less than one

token per period, then serialization is desriable. However, the increased frequency of

a serialized stream should not exceed one token per period. Serialization may be im-

plemented transparently to the producer and consumer processes, using a serializing

output buffer at the producer and a parallelizing input buffer at the consumer. In

this case, a stream A → B having token frequency f may be serialized by a factor

α without degrading system throughput if: αf ≤ 1 and CycleSlackA ≥ α. If stream

serialization is implemented with modification to the producer and consumer, then

their respective effects on system throughput must also be considered. For example, if

stream consumption is implemented by serializing the consuming state into α states,

then that state must be tested for its effect on system throughput using the approach

in the previous paragraph.

The converse to serialization is parallelization. Parallelizing a critical process or

stream may be desirable for improving system performance. For instance, a pro-

cess may be replicated or loop-unrolled to consume/produce more tokens per period.

Similarly, a stream may be widened to transmit more tokens per period. In general,

such transformations are complicated by hazards and limited by data dependencies.

For example, parallelizing a stateful process is no easier than vectorizing a loop in
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an imperative language. Parallelization is vastly simplified in statically schedulable

dataflow models and has been implemented in many forms, e.g. the MRSDF-to-

SRSDF unrolling of Williamson [Williamson, 1998], and the horizontal and vertical

transformations in StreamIt [Gordon et al., 2002a]. The slack and activity models

from Section 5.3.2 can be used to identify critical processes and streams and guide

where to apply parallelization with maximum benefit and minimum area.
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Streaming Programmable Platforms

Programmable platforms have emerged as an attractive alternative to ASIC and cus-

tom chip design in many application domains. A platform is an off-the-shelf part,

typically including one or more programmable cores for computation and a variety

of programmable off-chip interfaces. A platform based system is defined primarily as

software, separated from the generic hardware of the platform. The platform itself

may be general purpose, e.g. Xilinx Virtex 4 series FPGA [Xilinx, 2005c], or domain

specific, e.g. Cradle CT3600 series for video [Cradle, 2005], e.g. Intel IXP series for

networking [Intel, 2005].

The primary advantage of platform based design is that it avoids the difficulty and

cost associated with fabricating a new chip, including multi-million dollar mask sets,

transistor layout and sizing, signal integrity, parasitics, electromigration, and other

deep submicron effects. System cost is instead shifted into a per-part cost to pay for

the off-the-shelf platform. Traditionally, platform based design was more profitable

than an ASIC only at very low volumes. However, as mask costs continue to rise,

the break-even point at which platforms cease being more profitable shifts to larger

volumes, encompassing more application domains.
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Platforms can play a key role in enhancing design reuse. By its nature, a platform

separates system design into a software and hardware layer. Ideally, a next-generation,

compatible platform would innovate the hardware and run the same software at higher

performance. This has been the case for uniprocessors, where architectural families

such as Intel x86 and IBM System 390 have retained legacy software for decades.

However, modern platforms are larger and more heterogeneous, and they usually

lack the proper design abstractions to support software longevity. Where ever their

programming model exposes device details, it forces a system designer to tie software

to the architecture, and thus undermines software reuse. For example, inter-core

communication that was hand-scheduled as DMA transfers on a shared bus will likely

not be reusable on a next-generation device with a network on chip (NOC).

We have argued that a streaming discipline provides a key abstraction of com-

munication to enable retargeting and reuse of software. Stream connected modules

are agnostic of the timing and implementation of streams, so a platform is free to

innovate stream related hardware, e.g. providing a better network on chip (NOC) or

larger stream buffers. The platform need only retain a compatible stream interface

for every module.

A streaming discipline also enables an abstraction of area. A next generation plat-

form is usually larger, providing more programmable cores or a larger reconfigurable

fabric. Software that was designed to use a particular number of cores, ALUs, or gates

cannot normally benefit from additional hardware. The algorithms and schedule of

communication are already bound. The missing ingredient is an abstraction of area

and a methodology to map a computation of arbitrary size into a device of actual

size—analogous to the way a uniprocessor ISA hides the number of function units,

but at the system level. A streaming design has the advantage of timing indepen-

dence, whereby stream connected modules may be separated by large delay. In fact,

stream connected modules need not be resident and active at the same time. This
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flexibility suggests an abstraction of area by virtualization, where an arbitrarily large

network of stream connected modules is time shared on an arbitrarily small number

of module processors. A virtualized platform needs few mechanisms beyond those

of a basic streaming platform: a multi-context configuration store, a configuration

controller, and software to partition and schedule the virtually large design.

In this chapter, we discuss how to accommodate efficient, scalable streaming in

a programmable platform. In Section 6.1 we discuss a basic approach, extending an

FPGA-like platform with custom resources for streams. In Section 6.2 we discuss a

paged FPGA-like platform, which is partitioned into stream connected slices called

pages. This partitioning is indended to take advantage of locality within modules,

separating local and global interconnect into a physical, two-level hierarchy. Such

a platform would support faster compile times as well as fault tolerance through

resource sparing. In Section 6.3 we discuss a virtual, paged platform that incorporates

an abstraction of area. The platform is dynamically reconfigurable, using run-time

support to map many virtual pages into the available, physical pages. The virtualized

platform and run-time support are defined more completely in SCORE [Caspi et al.,

2000a].

A major challenge for targeting a paged platform is partitioning a computation

into stream connected pages. Such a partitioning must be sensitive to the possible

effects of inter-page communication delay on system throughput. The actual com-

munication delay may be unknown at compile time, particularly with virtualization

(where the number of pages is unknown) or resource sparing (where the relative lay-

out of pages is unknown). In Section 6.4, we discuss techniques for automatically

restructuring a process network of arbitrarily sized, stream connected modules into a

network of fixed-size, stream connected pages. The optimal size of a page remains an

open research question, which could be answered by using our proposed techniques

to map a set of benchmark applications to a variety of page sizes.
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A number of so-called streaming platforms exist, including Pleiades [Wan et al.,

2001], Imagine [Khailany et al., 2001], and TRIPs [Sankaralingam et al., 2003]. How-

ever, their notion of a stream differs from ours. While it may be possible to map our

streaming model, TDFPN, to those architectures, the results may not be optimal.

The platforms proposed in this chapter are built from the ground up to support the

streaming model and synthesis methodology of Chapters 2 and 3 on a reconfigurable

fabric.

6.1 Basic Platform

A minimalist approach to creating a streaming, programmable platform is to add

some custom resources to an FPGA. A field programmable gate array (FPGA) is a

highly generic programmable platform, capable of emulating arbitrary digital logic

using look-up tables (LUTs) and registers. Modern FPGAs include many custom

resources to improve efficiency, including carry chains, SRAM memory, multipliers,

and even entire microprocessors. We might consider continuing this trend by adding

resources to make the streaming methodology of Chapter 3 more efficient. The key

ingredients would be stream interconnect, stream buffers, and stream interfaces for

other custom resources like memory and processors.

6.1.1 Stream Interconnect

Existing FPGA interconnect is typically segmented into different lengths to best man-

age wire and stub capacitance. Short wires have low capacitance and switch fastest.

Long wires have high capacitance and switch slowest. To create long routes, wires

are cascaded through intermediate buffers or pass transistors, or pipelined through

logic blocks. Our streams may be pipelined in FPGA logic blocks using registers or
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relay stations (minimal, two-element queues). However, pipelining streams in logic

blocks has several problems: (1) it wastes logic resources, (2) it consumes additional,

local interconnect for controlling relay blocks, and (3) it is inefficient in existing tool

flows (as we discovered in Section 4.5). Thus, we should consider adding pipelining

resources to at least some of the interconnect. Streams may then be overlaid on top

of, and without disturbing, the existing FPGA interconnect.

6.1.1.1 Registered Interconnect

Pipelining streams with registers can be supported by adding registers directly to

the interconnect. Registered routing switches have been proposed for several recon-

figurable architectures, including HSRA (fat tree interconnect) [Tsu et al., 1999],

conventional FPGAs [Singh and Brown, 2001], and SFRA (“corner turn” switches)

[Weaver et al., 2004]. Their approaches rely on retiming, during or after placement, to

take advantage of interconnect registers. Retiming at such a late stage has the prob-

lem that the existing placement may be unable to accommodate the new resources

required by retiming. Specifically, retiming may create register delays on non-critical

paths to balance parallel, critical paths. To accommodate those delays without mod-

ifying placement, the above architectures incorporate input registers in logic blocks.

Furthermore, backwards retiming of registers with initial values may require addi-

tional control, so it is usually forbidden, limiting the efficacy of retiming. Stream

pipelining avoids these problems, since it does not require post-placement retiming of

arbitrary logic. Balancing pipeline delays on parallel streams is desirable for avoiding

pipeline bubbles, but those delays can be accommodated in stream buffers, not in

generic logic blocks. Also, pipelining a stream does not involve backwards retiming

of initial values, even if the stream has initial contents.
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6.1.1.2 Relayed Interconnect

Pipelining streams with relay stations can be supported by adding custom relay blocks

to the interconnect. A relay station is a minimal, two-element queue that combina-

tionally decouples all inputs from all outputs. Its implementation can be very small,

using two data registers, a data multiplexer, and a three-state FSM1. The FSM and

register enable can be shared across all bits of a multi-bit stream. This sharing re-

quires all bits to arrive at the same time, so it is best served with bussed interconnect,

described next.

6.1.1.3 Bussed Interconnect

If a stream is pipelined with simple registers, then all its bits are, in principle, equal.

They may be routed and registered independently on an FPGA-style, bit level inter-

connect. Nevertheless, bits must arrive synchronized at any object having a stream

interface, including relay stations and queues. Bits arriving out of sync would require

either (1) additional registering to realign in time, or (2) separate flow control. We

prefer to avoid those overheads, keeping just one set of flow control bits per stream,

and amortizing the cost of that flow control over all the data bits of the stream. The

easiest way to guarantee synchronized arrival is to constrain all bits of a stream to

take the same route. That structure can be exploited in hardware using bussed routes,

wherein the interconnect switches and registers of an entire word are controlled by a

shared configuration. Bussed routes can thus amortize the area of route configura-

tion across all bits of a multi-bit stream. We might imagine a basic stream width in

hardware, say four data wires plus valid and back-pressure wires. A narrower stream

would underutilize the data bits, whereas a wider stream would have redundant flow

control.

1 A possible implementation for a relay station is the shift register queue from Figure 3.7(bottom).
At depth two, it would be optimized to need no shift register and no address register.
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FPGAs have traditionally shunned bussed interconnect, since it leads to some

fragmentation, i.e. unused bits on a bus. Fragmentation is particularly expensive

in FPGAs, where the area of programmable interconnect dominates chip area, easily

taking 97-98% [DeHon, 1996]. Nevertheless, bussing streams may be more compelling

than bussing general purpose interconnect. Streams represent inter-module commu-

nication, which typically has fewer narrow control signals than random logic, and

consequently less fragmentation. It is possible to apply bussing only to the stream

interconnect and not to the local interconnect that handles random logic. Further-

more, the area saved by bussing streams is reflected in more resources, including

interconnect switches, relays, stream buffers, and any stream interface. The optimum

bit width for bussing remains an open research question, particularly if bussing is

restricted to streams. The optimum may lie in providing a mix of stream widths, for

example a boolean stream and an eight-bit data stream. Ye et al. [Ye and Rose, 2005]

study bussed interconnect for conventional FPGAs (without streaming), finding that

converting 50% of all tracks into 4-bit busses can provide a system area savings of

about 10%.

6.1.2 Stream Buffers

Our mapping of streaming applications to an FPGA (Chapter 4) found that stream

buffers comprise 38% of application area, assuming stream buffers are implemented

in Xilinx logic blocks using SRL16 mode. This relatively high fraction suggests that a

streaming platform should provide custom resources for buffering streams. Our basic

requirement is a FIFO queue with an appropriate stream interface, including valid,

back-pressure, and reservation (as discussed in Section 3.7.2). Interestingly, Xilinx

Virtex 4 FPGAs include FIFO controllers for block RAM, including an “almost full”

signal that could serve as back-pressure with reservation. Adapting their controller
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for our stream protocol would require minimal additional logic. However, Block RAM

is efficient only for large buffers (in fact, the smallest block RAM FIFO supported

in Virtex 4 is 512 elements deep). The common case for our streaming applications

is small buffers of no more than 16 elements. A complete streaming platform would

need to provide efficient resources for buffers of this size. Stream buffers should be

large enough to accommodate post-placement pipeline balancing (e.g. additional 1-2

elements) and reservation capacity for stream-based logic pipelining (e.g. additional

3-4 elements). In addition, for general process networks, stream buffers need a certain

minimum capacity for correctness and an excess to smooth out dynamic rate varia-

tions. Thus, a cumulative capacity of 16 seems appropriate. We have also mentioned

above the need for custom relay stations blocks, which are two-element queues.

6.1.3 Stream Interfaces

A streaming platform should provide streaming interfaces for most, if not all, cus-

tom resources, including multipliers, memory, embedded processors, and off-chip I/O.

Modern FPGAs already provide input and/or output registers for hard blocks such

as multipliers and memory, in recognition of the need to pipeline routes to these

blocks. It would not take much more circuitry to provide a full stream interface for

these blocks. Often these blocks are word oriented and will amortize one instance of

stream flow control for an entire data word (e.g. 18-bit multiplier on Xilinx Virtex

II, 8- to 48-bit DSP48 on Xilinx Virtex 4). A streaming block interface is easier to

use than manually pipelining an RTL description to accommodate a block’s manda-

tory input/output registers. Nevertheless, the stream interface can be made optional,

by disabling or ignoring flow control, to give a designer the choice of using a block

conventionally via RTL.

A stream interface requires, at minimum, flow control signals and input/output
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queues. An input or output queue can be modeled as a unit-depth, enabled regis-

ter queue, as in Section 3.4.1. This structure is only minimally larger than an in-

put/output register, requiring an AND gate and a one-bit valid register. The enabled

register queue has a combinational path connecting input and output back-pressure,

so it does not fully decouple input from output. However, as we verified in Chapter 4,

flow control is fast and seldom in the critical path, so pipelining logic with enabled

register queues is effective. In fact, pipelining a custom block with a fixed number of

stages can be modeled as a cascade of enabled register queues, with stages of the block

between them. To pipeline back-pressure on block inputs and outputs, it suffices to

use relay stations. The required flow control resources are minimal and could be built

directly into the block. For more flexibility, flow control could be implemented in

adjacent LUTs or in specialized “flow control” blocks.

6.1.3.1 Arithmetic Blocks

Stream flow control for an unpipelined arithmetic block such as a multiplier is fairly

simple. For the multiplier, we have: fire = i1v ∧ i2v ∧ ¬ob, ov = fire, ib = ¬fire.

For a block with an input N -tuple iii and an output M -tuple ooo, we have: fire =∏N
n=1(i

n
v )

∏M
m=1(¬om

b ), inb = ¬fire ∀n, on
v = fire ∀m. Pipelining can be modeled as a

cascade of enabled register queues.

6.1.3.2 Memory Blocks

A conventional block RAM interface in an FPGA involves signals for data, address,

and access modes. It often requires requires input or output registering to guarantee

proper timing. A streaming memory interface packages the same signals into streams.

Such an interface is naturally synchronous and pipelined, since it must be surrounded

by input/output queues (enabled register queues or relay stations). If the queues
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are integrated into the memory block, then their registers can serve the purpose

of input/output registering for proper timing. Thus, the incremental cost of the

streaming interface is small, merely in flow control.

A streaming memory interface simplifies memory access in several ways. First,

streaming flow control is a natural way to deal with unknown memory latency. Thus,

a streaming memory can be transparently implemented as DRAM with refresh. In

contrast, FPGA block RAM is usually SRAM, to guarantee a fixed access latency.

More generally, a streaming interface can hide the implementation of memory alto-

gether, be it SRAM, DRAM, a composition of memories slowed by interconnect delay,

or even an off chip memory. In contrast, RTL access to memory requires separate

interfaces and control for every memory implementation. A streaming memory inter-

face can also integrate an address generator for common access modes. This would

obviate the address and mode signals, leaving only streaming data. A sequential

or strided access pattern is common in digital signal processing and may be worth

specializing. A FIFO access pattern is particularly valuable and can serve as a large

stream buffer.

6.1.3.3 Off-Chip I/O

Communication with external components can be handled in several ways. A stream

interface can be mapped directly to device pins, to support streaming communication

between devices. This may be useful for supporting transparent partitioning of a

large computation across multiple, concurrent devices. To support standard off-chip

interfaces (USB, PCI, etc.), the on-chip interface controller should have a streaming

interface within the platform. This notion is similar to streaming memories, packaging

data and protocol-specific signals into streams. Likewise, the streaming interface can

be specialized for common access modes. In this way, streams can simplify and

abstract an off-chip interface, provide buffering for it, and naturally handle unknown
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or dynamic rates and latencies.

6.1.3.4 Embedded Processors

Microprocessors usually communicate with other components through specialized bus

protocols or DMA (direct memory access). While memory access is usually well in-

tegrated into the processor instruction pipeline, other forms of communication are

not, requiring polling, stalling, or interrupts. Efficient streaming can be fully inte-

grated into a processor instruction pipeline, as suggested for SCORE [Caspi et al.,

2000a]. We add a stream read instruction sread(s,v) and a stream write instruction

swrite(s,v), where s denotes a stream identifier and v denotes a token value (either

one may be a register or, where appropriate, an immediate). These instructions are

entirely analogous to memory load and store, with stream identifiers s constituting a

kind of address space. Single-cycle and non-blocking stream access can be supported

with the same techniques as memory access, using load/store units and an instruc-

tion reorder buffer. Stream writes can be handled in a write buffer, without stalling

the instruction stream. Stream reads can wait for a token while other instructions

proceed, possibly with speculation. If a stream is not ready for a long time, then a

stalled stream access can trigger an exception and a context swap, to be continued

later. The stream space can be virtualized using a stream look-aside buffer (SLB),

analogous to a translation look-aside buffer (TLB). This allows handling a larger

number of streams, protecting stream access for different processes, and hiding the

implementation of each stream. Some stream accesses may be routed to stream ports,

while others may be routed directly to a local memory buffer.
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6.1.4 Compilation Issues

The netlist given to place and route (PAR) must distinguish between stream con-

nections and conventional connections. Stream connections can be automatically

pipelined, and they may be restricted to particular wires. The two kinds of con-

nections can be routed independently if stream interconnect is very distinct from

conventional interconnect, e.g. registered, bussed, and connected to custom resources

such as queues. However, stream interconnect may be identical to conventional in-

terconnect except for the presence of additional routing registers, as in [Singh and

Brown, 2001]. In this case, it is easy to see how connections of one kind could be

implemented on routes of the other kind. For performance, PAR should begin by

allocating stream connections to stream routes and conventional connections to con-

ventional routes, but it will have the freedom to spill excess connections to the other

kind of route. Ultimately, stream connections must reach logic blocks, so there must

be bridges between stream and conventional interconnect. Those bridges may be the

logic blocks themselves.

The compilation flow for a streaming platform is essentially identical to the flow

targeting FPGAs, including the optimization flow of Section 5.1. The only difference

is that logic synthesis and PAR must be made aware of new custom resources.

6.2 Paged Platform

The natural layout for a module based design is one where each module is localized,

but different modules may be distant. This layout does not use stream interconnect

within modules, nor conventional interconnect between modules. A reconfigurable

architecture can exploit that structure to save interconnect area by introducing a

two-level hierarchy in hardware. The reconfigurable fabric would be sliced into fixed
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size pages, with interconnect between pages being strictly streaming, and intercon-

nect within pages being strictly non-streaming. Pages, resembling miniature FPGAs,

would be laid out in a regular, two-dimensional grid, connected by a streaming net-

work on chip (NOC).

A paged architecture can provide benefits to system area, compile time, and soft-

ware longevity. It may save area in interconnect, since it need not provide both

streaming and non-streaming interconnect everywhere. It may reduce place and route

time by dividing the problem into two levels, within a page and between pages. It

would also promote software longevity by enabling a next generation device to in-

novate the streaming NOC without obviating paged software. However, a paged

architecture also incurs overhead associated with partitioning a computation into

pages, affecting system area, performance, and compile time. Partitioning leads to

area fragmentation, i.e. underuse of resources in each page, and to communiation

delay between pages. It also adds to compile time. The total effect of paging on area,

performance, and compile time remains an open question and would be a function of

the page definition (size, I/O, etc.).

6.2.1 Page Definition

A page is a fixed-size slice of reconfigurable resources with a streaming interface. It

has a particular size and a particular number of stream ports. Each stream port can be

equipped with custom resources such as a stream queue. A page would be configured

to run one or more streaming processes. Compilation and resource allocation within

each page is no different than for a non-paged platform. The key operational difference

is that modules must fit within pages, or be partitioned to fit within pages, since

communication between pages is strictly streaming.

Page size determines the basic granularity for streaming modules. A small page
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mandates small modules, whereas a large page permits large modules (or multiple

small modules). The choice of page size poses an interesting trade-off. A larger

page lowers the area cost of streaming, since that area will be amortized over larger

modules. However, a page that is too large suffers from internal interconnect delay. It

may also lose density if it contains multiple modules and must implement the streams

between them in generic, LUT-based resources.

Figure 4.10 in Chapter 4 shows the distribution of SFSM areas on a Xilinx Virtex-

II Pro FPGA for seven streaming multimedia applications. Discounting stream

queues, we found that 87% of SFSMs are smaller than 512 4-LUTs. This suggests that

a page with 512 4-LUTs would accommodate most SFSMs without having to parti-

tion them. Particularly large SFSMs would still need to be partitioned. Particularly

small SFSMs could be clustered to fill pages.

6.2.2 Heterogeneous pages

A paged architecture may contain more than one kind of page. Particularly useful

page types include memory pages, processor pages, and off-chip I/O pages. Het-

erogeneous pages are a convenient way to package custom resources with streaming

interfaces, as in a non-paged architecture. In a paged architecture, those resources

connect only to the global stream interconnect.

6.2.3 Hierarchical Place and Route

Conventional place and route considers an entire system at once. First, all components

are placed using distance-based timing estimates. Then, all components are routed

based on detailed timing estimates and availability of detailed routing resources. Both

parts of the problem are NP-complete, and even approximate solutions have super-

linear complexity with respect to the number of components. A paged architecture
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mandates a hierarchical approach to place and route: (1) partition into pages, (2)

for each page, place and route its contents, and (3) place and route indivisible pages.

The hierarchical approach can be faster than monolithic place and route in several

respects.

Suppose we are mapping a netlist of size N to a paged architecture with P pages

of equal size. Following ideal partitioning, there will be P instances of place and

route on netlists of size N/P (within pages) and one instance of place and route on

a netlist of size P . Suppose there are relatively few pages, s.t. P ≤ N/P . Suppose

the complexity of monolithic place and route is Omonolithic = O(f(N)), where f is

super-linear in N . Then the complexity of hierarchical place and route will be lower:

Ohierarchical = P ·O(f(N/P )) + O(f(P ))

≤ P ·O(f(N/P )) + O(f(N/P ))

= (P + 1) ·O(f(N/P ))

≤ ((P + 1)/P ) ·O(f(N))

≈ O(f(N))

= Omonolithic

This is a simplified analysis, since the complexity of place and route depends also on

the number of nets. However, the number of nets is bounded between N and N2, so

a similar analysis would hold.

Of course, hierarchical place and route requires an initial step of partitioning,

which adds complexity. This obfuscates the question of whether the monolithic or

hierarchical approach is faster. If partitioning can be made fast, while place and route

only get harder with each device generation, then the hierarchical approach eventually

becomes faster. For general circuits, the problem of area balanced, I/O constrained
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partitioning is known to NP-complete, but there are efficient, linear approximations

based on min-cut/max-flow [Yang and Wong, 1994]. In Section 6.4, we propose a

heuristic, throughput aware approach for partitioning process networks.

6.2.4 Area Fragmentation

Partitioning a computation into pages invariably introduces some area fragmentation,

or underuse of resources in each page. Partitioning for maximum area utilization is

usually the wrong thing to do, since it may separate communicating modules over long

distances and degrade system throughput. Even if partitioning did target maximum

utilization, it would still be limited by the I/O capacity of each page. A page may

be able to accommodate the area of an additional module but not its I/O streams,

in which case the area remains unused. Thus, any mismatch between modules and

pages leads to some fragmentation.

Area utilization in pages is a function of both the partitioning approach and

the page definition. Clearly, performance optimal partitioning would waste more

area than area optimal partitioning. A mismatched ratio of page area to page I/O

would also lead to fragmentation. A theoretically optimal ratio may be guided by

Rent’s Rule, an empirical power law relating circuit size and I/O: IO = CNp, where

p ∈ (0, 1) is the Rent parameter, and C is a constant [Landman and Russo, 1971]

[Lanzerotti et al., 2005]. Rent’s Rule based, programmable interconnect is studied in

[DeHon, 2001].

6.2.5 Fault Tolerance

A paged architecture supports a limited form of fault tolerance through resource

sparing. That is, an entire page can be marked as faulty and removed from the

resource pool. Other pages remain unaffected, since they share no resources with the
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faulty page. Furthermore, pages are translatable. Thus, avoiding one faulty page does

not require recompiling any page contents, only modifying the final placement and

routing of indivisible pages. In contrast, FPGAs route through the entire area of the

fabric, so a local fault can interfere with very distant components. Avoiding a fault

in an FPGA usually requires a complete, device-wide place and route. Online fault

tolerance would possible in a multi-context platform if page PAR were performed

online, as for the virtual paged platform in Section 6.3.

6.2.6 Compilation issues

The biggest challenge in compiling to a paged architecture is partitioning and packing

to fill pages. The job of a partitioner is to transform a process network of arbitrarily

sized processes into a process network of fixed size pages. Small processes may be

packed together, while large processes must be partitioned into communicating sub-

processes. Page partitioning must be done early in the compilation flow to preserve

knowledge of processes. We discuss page partitioning further in Section 6.4.

The compilation flow for a paged architecture is modified from the flow of Sec-

tion 5.1 in two ways: it includes page partitioning, and it splits place and route into

two phases (within and between pages). The overall flow is as follows:

1. High level analysis.

(serialization, buffer bounding)

2. Page generation.

(page partitioning, process pipelining, synthesis within pages, PAR within pages)

3. Page composition.

(stream aware PAR of indivisible pages, stream pipeline balancing, buffer pa-

rameter setting)
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6.3 Virtual Paged Platform

Streams support efficient computation in the presence of long communication delay,

by pipelining and buffering that communication. Just as streams permit communica-

tion between devices, they also permit communication between different contexts of a

single, time-shared device. An individual context need not know how many other con-

texts are being time shared. Thus, streaming and context swapping provide a means

for abstraction of area, or virtualization. Stream based virtualization provides two key

benefits to system design: efficient run-time reconfiguration (RTR), and automatic

technology scaling. A streaming application can be automatically partitioned into

different contexts, using streams to buffer intermediate data between contexts, and

using token flow to guide reconfiguration. With this automation, an application can

be retargeted to different size platforms, automatically benefiting from higher perfor-

mance on larger platforms. With proper software and hardware support, streaming

is a key enabler for software longevity and scaling for large, reconfigurable systems.

Virtualization can be added to a paged reconfigurable architecture with only in-

cremental cost. The primary requirements for supporting virtualization are a large

context store, reconfiguration control, and algorithms for context partitioning and

scheduling. This section is dedicated to those mechanisms. Many of the ideas and

mechanisms were originally developed for SCORE, including an instance of a stream-

ing, paged, virtual platform [Caspi et al., 2000b] [Caspi et al., 2000a] [Markovskiy et

al., 2002] [Markovsky, 2004]. We redevelop them here as incremental additions to our

streaming model and paged architecture.

6.3.1 Stream Based Virtualization

Run time reconfiguration (RTR) is a general technique for exploiting the power of

reconfigurable platforms by mapping a large application as a collection of separate but
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interacting device contexts (e.g. [Eldredge and Hutchings, 1994] [Jones et al., 1995]

[Wirthlin and Hutchings, 1996] [Luk et al., 1997] [Hudson et al., 1998] [Swaminathan

et al., 2002]). Compared to single context execution, RTR can:

• Reduce the size of the platform required to solve a phased or multi-mode prob-

lem, with different contexts containing the datapath of different phases/modes.

• Reduce the size of a platform required to solve a multi-rate problem by time-

multiplexing low-throughput components and keeping high-throughput com-

ponents persistent.

• Reduce area and improve performance by specializing a general application to

a particular mode or data set, either by instantiating different contexts, or by

modifying contexts.

• Offer time-space trade-offs to a system designer, so a problem with modest

throughput requirements can be implemented in economical hardware.

Unfortunately, RTR is not well supported in commercial architectures and commercial

tool flows. There is no accepted, unifying model for how to describe the decomposition

of an application into contexts and how to implement their sequencing. The designer

is usually left with the entire job of partitioning into contexts, scheduling contexts,

and triggering and managing reconfiguration in hardware.

Stream based virtualization provides a systematic and efficient way to use RTR.

The decomposition and phasing of a streaming application as contexts is implied

by the application’s stream structure, which exposes communication dependencies,

throughputs, and dynamics. That information enables software tools to automati-

cally cluster streaming modules into different contexts and to sequence them based

on token flow. Such automation reduces the system designer’s job and hides the

hardware mechanisms used for managing reconfiguration. Efficient time multiplexing

is supported by making stream buffers large enough to allow each context to run for
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a long epoch. This allows a system to tolerate and amortize long reconfiguration

times—thousands of cycles or more. In contrast, non-streaming approaches to virtu-

alization must reconfigure as often as every clock period, which requires specialized

hardware support that is area and power intensive (e.g. WASMII [Ling and Amano,

1993], TMFPGA [Trimberger et al., 1997]).

Stream based virtualization also supports automatic performance scaling on next-

generation hardware. RTR works by time multiplexing a large application on limited

hardware. Ideally, application performance would be higher on larger hardware, since

more parts of the application could execute concurrently. With the advent of auto-

matic partitioning and scheduling, a streaming application could be automatically

retargeted to larger hardware. Thus, an entire system could be retargeted to a larger,

next-generation platform and automatically enjoy performance improvement, riding

Moore’s Law without redesign. Such improvement can continue until the platform is

large enough to contain the entire application in one context.

6.3.2 Virtual Paging, Binary Compatibility

The primary challenge in retargeting a streaming application to a next-generation

platform is recompilation, including partitioning and scheduling new contexts. Re-

compilation is certainly easier than redesign, but it still has drawbacks, namely that

it precludes binary compatibility between platform generations. Binary compatibility

in uniprocessors has proven to be an invaluable way to retain legacy software across

device generations, providing performance scaling for shrink-wrapped software with

zero involvement from the original software developer. In uniprocessors, performance

scaling is enabled by the ISA’s abstraction of hardware size (such as number of func-

tion units), and binary compatibility is enabled by supporting that abstraction in

hardware (issue logic, reservation stations / reorder buffers). A binary compatible,
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reconfigurable platform would need a similar unit of abstraction in hardware that is

supported across device generations. That unit can be a page, as in Section 6.2.

A paged, virtual platform is largely identical to a paged platform, but it runs

large applications using RTR. The application and reconfigurable fabric are both

sliced into fixed size pages. A scheduler is required for sequencing the application’s

virtual pages on the platform’s physical pages. A device with more physical pages will

accommodate more of the application’s virtual pages at once, improving performance.

The larger device will need a new schedule, but it can reuse the same compiled

page contexts, provided the two devices have compatible page definitions. Binary

compatibility across a family of page-compatible devices can now be provided by

encoding an application as a collection of page contexts and a graph for connecting

them. A device-specific schedule can be generated at load time by a device-specific

operating system, or offline in advance. Either of these choices is sufficient to enable a

business model of shrink-wrapped software for reconfigurable platforms. Comparing

to uniprocessors, consider that x86 software is usually distributed either as a single

binary or as a collection of binaries optimized for different x86 variants (P4, PIII,

etc.), yet any of those binaries will work on next year’s processor.

Figure 6.1 shows a sample, streaming application—JPEG Encode—mapped to two

page compatible devices of different size. The devices are shown with reconfigurable

pages marked CP (compute pages), streaming memories marked CMB (configurable

memory block), and a fat-tree stream network, following SCORE conventions. The

application is first partitioned into pages (6.1(a)), with each named block denoting

a group of up to four pages. On a small device with few pages (6.1(b)), application

execution is phased using RTR, with each phase reading from and writing to inter-

mediate stream buffers. The RTR schedule repeats indefinitely, or until the input

image(s) are exhausted. On a large device with many pages (6.1(c)), application

execution is fully spatial in a single context.

224



Chapter 6. Streaming Programmable Platforms

(a) Quantize CodeMotion
Estimation Transform

(b) Transform

buffer

buffer

Quantize

buffer

buffer

Code

bufferbuffer

buffer

Motion
Estimation swap swap swap

(c)

Quantize Code

Motion
Estimation Transform

CMB

CP

buffer

Figure 6.1: JPEG encoder on a virtual paged platform, (a) application, (b) time multi-
plexed on small device, (c) fully spatial on large device
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Paged, virtual hardware is highly analogous to paged, virtual memory in micro-

processors. In either case, a virtually large resource (memory vs. fabric) is time

shared at a single granularity called a page. Pages are fixed size, translatable, and

non-overlapping, which vastly simplifies the resource management problem of where

to load new pages. Page size is retained across a family of compatible devices, and

each device has a different number of pages. The application designer need not know

about pages at all. The compiler need not know the number of pages, though it

may need to know the page size to apply certain optimizations (data structure layout

vs. computation layout). Only the operating system, which decides the final sched-

ule and placement of pages, needs to know both page size and number of pages. A

scheduling policy is used to decide which pages to evict and reload, and when to do

that. Finally, the page size is chosen by architects to balance the overheads of page

reloading (worse for small pages) and fragmentation (worse for large pages).

6.3.3 Hardware Requirements

The primary hardware requirements for adding virtualization to a paged, streaming

platform are (1) sufficient memory for multiple contexts, and (2) a reconfiguration

controller for RTR. The complexity of the configuration controller depends on how

much scheduling needs to be done at run-time. The controller may be anything from a

static, round-robin sequencer, to a full fledged microprocessor for dynamic scheduling.

In addition, it is useful to have (3) deadlock detection hardware, which can inform a

controller/scheduler that a running context can make no further progress and should

be swapped.
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6.3.3.1 Memory

A virtual paged platform needs storage for three kinds of structures: (1) contexts,

(2) stream buffers, and (3) user segments. Structures associated with a non-resident

context can be temporarily transferred to off-chip memory to free space. However,

this lengthens the context swap time and requires a more sophisticated reconfiguration

controller.

Context Store. A page context consists of a configuration and state, which

must be saved during a context swap. Context must be saved for every kind of

page, including reconfigurable fabric pages, streaming memories, and custom cores

(MACs, etc.). It may be useful to separate configuration, which is static, from state,

which is dynamic, and thus avoid storing duplicate configurations. However, most

reconfigurable architectures use a unified context format to simplify context loading.

Stream Buffers. Each device context includes large stream buffers for streams

communicating with other contexts. Those streams represent intermediate data gen-

erated by a previous context or being generated for a future context. Intermediate

data that is not used in the present context, i.e. whose producer and consumer are

not loaded, need not remain on chip.

User Segments. A device context may include memory segments defined as

part of the original computation. Examples include tables of constants and scratch

memory.

Unified On-Chip Memory. To simplify the architecture, all three kinds of

structures can be stored in a unified kind of on-chip memory. During normal op-

eration, the memory would use stream interfaces to implement stream buffers and

segment operators. During reconfiguration, the memory would provides context load

and store for pages, possibly also through stream interfaces. All these functions can

be served by the streaming memories discussed in previous sections. To provide
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high storage capacity on chip, streaming memories can be implemented as embed-

ded DRAM (as in HSRA [Tsu et al., 1999]). The stream interfaces would naturally

hide the DRAM refresh latency. Multiple, independent memories can be used to

reconfigure multiple pages in parallel, reducing reconfiguration time.

Page Input Queues. An active streams on-chip may be buffered in one or

more different places, including a streaming memory, the stream network (e.g. relay

stations), and a page input queue. We associate the main queue for each stream with

the stream’s consumer, as a page input queue. This allows the stream contents to

be saved with the page during a context swap. A page input queue can also used to

drain the stream network before a context swap, in order to capture in-flight tokens

as part of the context being saved. For this purpose, the queue must have an excess

capacity equivalent to the maximum, round-trip latency of the stream network. This

requirement is similar to reservation for stream pipelining (Section 3.7.2), but the

excess capacity must be provided even if the stream uses pipelining mechanisms that

do not normally require downstream reservation, such as relay stations.

6.3.3.2 Reconfiguration Control

A context swap involves a sequence of operations that must be managed by a recon-

figuration controller:

• Halt all pages

• Drain data from the stream network into stream buffers

• Save page contexts to memory

• Choose the next context for each page

• Load page contexts from memory

• Load network configuration from memory

• Restart all pages
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Draining the Stream Network. Draining the network means that network

state need not be saved during a context swap. In-flight tokens are instead collected

in page input queues, to be stored as page context. Draining the stream network can

be done simply by waiting for a fixed number of clock periods corresponding to the

maximum, round-trip network latency.

Saving and Loading Contexts. These steps may be non-trivial and multi-

phased. If streaming memories are used for context store, then they must be tem-

porarily configured into a context swap mode. Context swap mode resembles a seg-

ment operator in sequential read or sequential write mode. However, it must not

overwrite the state of a real segment operator that was previously active. The seg-

ment operator’s state, including any address and bounds registers, can first be saved

into the same memory (so as not to involve the network), before the memory begins

to swap contexts for other pages. Additional phasing is needed if a streaming mem-

ory provides context store for more than one other page, or if its contents need to be

spilled to / recovered from off-chip memory.

Choosing The Next Context. This step is equivalent to scheduling, or to

implementing a pre-computed schedule. The simplest case is round-robin scheduling

for a cycle of contexts. This case is relatively easy to implement with a small, hard-

ware controller, or with distributed control for each page. However, it represents a

static schedule that cannot respond to any dynamics in the application’s dataflow.

More sophisticated, dynamic scheduling requires a correspondingly more sophisti-

cated reconfiguration controller. In the extreme, the reconfiguration controller can

be a microprocessor with scheduling software, as in SCORE. The microprocessor can

be a priveleged page that also runs streaming modules during normal operation.

Partial Reconfiguration. Thus far, we have described reconfiguration as an

atomic, device wide reconfiguration, implemented by halting and swapping every

component. Partial reconfiguration would involve swapping only some components.
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This is useful if a schedule calls for pages to be resident in several contiguous contexts.

Live partial reconfiguration would involve halting and swapping some components

while others continue to run. This is useful for allowing persistent pages, such as

off-chip I/O interfaces, to continue to function during reconfiguration. Live partial

reconfiguration requires that active pages not interfere with the swapping of other

pages, nor with reconfiguration of the stream network. That may be accomplished by

cutting active pages off the stream network during reconfiguration, or by supporting

live, partial reconfiguration of the stream network.

6.3.3.3 Deadlock Detection

In a phased RTR implementation, a context may reach a point where it can make

no forward progress, because its input buffers are empty or its output buffers are

full. Keeping such a context resident is largely a waste of time. It is useful to add

a hardware mechanism to detect this case. It is not sufficient to check for all empty

inputs or all full outputs, since a single buffer can stall the context. In general, it is

necessary to verify that every page has stalled for a period longer than the round-

trip latency of the stream network. This can be implemented by emitting a stall

signal from every page, computing a wired AND of those signals, and detecting a

true-valued result for a certain time-out period. The stall signals can be streams, but

it is appropriate to specialize them, as they are infrequent. One way to compute a

page stall signal is to detect inactivity on all the page stream ports. However, this

method would yield a false positive for any page that computes for a while without

communicating.
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Figure 1.1: Hypothetical, single-chip SCORE system.

1.1 SCORE

[CCH+00] presents SCORE (Stream Computations Organized for Reconfigurable

Execution), a system that strives to eliminate existing barriers to the widespread ef-

ficient exploitation of reconfigurable devices. SCORE introduced a compute model

based on paged virtual hardware, which acts in a manner similar to virtual memory.

The paged model provides a framework for device size abstraction, automatic run-

time reconfiguration, binary compatibility among page-compatible devices, and

automatic performance scaling on larger devices without recompilation.

SCORE allows a programmer to describe a computation as a graph of arbi-

trary sized operators that communicate tokens through streams with logically un-

bounded buffering capacity. A high-level language compiler maps a given arbitrary

sized computation into a graph of fixed-size compute pages constrained by the un-

derlying architecture. In this work, the target hardware is a microprocessor and a

reconfigurable array hybrid shown in Figure 1.1. The array is partitioned into fixed-

size compute pages (CPs) and configurable memory blocks (CMBs). The run-time

scheduler time-multiplexes compute pages onto physical CPs and manages buffer

allocation in CMBs. This presents to the user the illusion of unbounded hardware.

SCORE presents several models that define for the developer the expected com-

putational and execution semantics. These models expose varying levels of detail.

SCOREProgrammingModel. A SCORE computation is described by a data-

flow graph of operators and memory blocks that communicate through streams.

Streams are unidirectional, one producer, one consumer FIFO queues with logi-

cally unbounded depth. The operators consist of a finite state machine (FSM) that

5

Figure 6.2: A hypothetical SCORE architecture

6.3.3.4 Example: SCORE

The concepts discussed thus far are embodied in SCORE (Stream Computations Or-

ganized for Reconfigurable Execution) [Caspi et al., 2000a]. SCORE is a streaming

compute model and associated reconfigurable architecture using virtual paging. The

SCORE compute model extends TDFPN with a mechanism to dynamically create,

destroy, or modify TDFPN graphs. This mechanism is embodied in Streaming Tur-

ing Machine (STM) graph nodes, which build graphs and communicate with that

graph while it runs. STM nodes normally live on a microprocessor, where resource

allocation is easier to handle than in hardware.

Figure 6.2 shows a typical SCORE architecture. A Compute Page (CP) corre-
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sponds to the pages discussed above, containing reconfigurable fabric, stream ports,

and input queues. A Configurable Memory Blocks (CMB) corresponds to the stream-

ing memories discussed above, implementing context store, large stream buffers, and

segment operators. The stream network is a circuit-switched, pipelined, fat tree, net-

work on chip. The reconfiguration controller is a full fledged microprocessor, used

also for scheduling, running STMs, and boot-strapping (operating system, file I/O,

etc.). The actual size of CPs and CMBs is an architectural parameter, though nomi-

nally, SCORE uses 512 4-LUTs per CP and 2 Mbits per CMB. The figure shows one

CMB per CP, with each CMB wired to reconfigure the CP next to it. That ratio is

also an architectural parameter, and it may be higher (more CMBs) to support the

streaming requirements of small devices.

6.3.4 Compilation Issues

Compilation for a virtual, paged, streaming platform is divided into two major phases:

page generation, and page scheduling. Page generation involves partitioning the ap-

plication into pages and compiling page configurations. Page scheduling involves

assigning the pages to device contexts and compiling those contexts. Only the second

phase knows the actual number of pages in the target device.

The compilation flow for a virtual paged architecture is similar to the flow for

a non-virtual page architecture, but extending single-context page composition into

multi-context scheduling. Some parts of scheduling may be deferred as late as run-

time. Extending the flow from Section 6.2, we have:

1. High level analysis.

(serialization, buffer bounding)

2. Page generation.

(page partitioning, process pipelining, synthesis within pages, PAR within pages)
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3. Page scheduling.

(temporal partitioning, memory allocation, stream aware PAR of indivisible

pages, stream pipeline balancing, buffer parameter setting, time slice sizing)

6.3.4.1 Page Generation

Page generation for a virtual paged architecture is largely the same as for a non-

virtual paged architecture. The primary challenge is that page partitioning must be

done without knowing the actual communication delay between pages. That delay

depends on the device size, which is unknown at compile time. Device size affects

context assignment and placement. In the worst case, communication delay may be

indefinite for a stream that crosses a context boundary. For this reason, it is important

that partitioning strive to avoid page-to-page feedback loops, and otherwise minimize

communication frequency on feedback loops. Page partitioning is discussed further

in Section 6.4.

6.3.4.2 Page Scheduling

Page scheduling maps a virtually large graph of stream connected pages into a set of

device contexts that will be time multiplexed on one device. Scheduling involves four

major components:

1. Temporal Partitioning.

This step assigns pages to contexts. The assignment must respect the physical

limitations of what fits in a context (number of pages, number of stream buffers)

and apply a scheduling policy to minimize total execution time.

2. Memory Allocation.

Given a temporal partitioning, this step allocates the stored structures for each

partition into the streaming memories on chip, and decides which structures to
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swap off chip. These structures include contexts, stream buffers, and segments.

The allocation must respect streaming memory constraints of size and number

of physical segment operators, while minimizing the cost of off-chip swapping.

3. Place and Route.

Given a temporal partition, this step places the partition’s indivisible pages

(including streaming memories) within a context and routes them on the stream

network. We assume this step includes pipeline balancing and buffer parameter

setting. If network configurations are normally stored in streaming memories,

then the results of this step must be overlaid into the memory images.

4. Time Slice Sizing.

This step decides how long a given context will run before the next context

swap, termed a time slice or epoch. The epoch is usually determined by the

time required to exhaust inter-context input and output buffers.

The four components of page scheduling can be done offline, online, or in some

combination. In general, we equate offline with static and online with dynamic.

Online scheduling is useful for responding to the dynamic behavior of an application,

which may temporarily make some pages dormant and others more active, or even

change the page graph. In principle, a dynamic schedule may save time in cases where

a static schedule would waste it. However, a dynamic schedule requires time online

to make decisions, so it may ultimately reduce run-time performance.

Markovskiy et al. [Markovskiy et al., 2002] [Markovsky, 2004] study a spectrum of

static versus dynamic scheduling. Figure 6.3 depicts the four components of schedul-

ing on an axis that may be cut to denote which component is static and which is

dynamic. The position of the cut corresponds to various flavors of scheduling. The

figure depicts a fifth component of scheduling, “timing”, refering to scheduling cycle
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Timing Placement
Routing

Resource
Allocation

Sequence
Temp Partition

DYNAMIC
(run-time)

STATIC
(load-time)

2 3 4 5 61

run-time load-time

CAD
Fully Static
Quasi-Static

Fully Dynamic

Timeslice
Sizing

Figure 3.1: Space of scheduling solutions, which includes (1) FPGA CAD, (2)
a fully static (e.g. SDF), and (6) a fully dynamic scheduler (e.g. Section 3.3).
Quasi-Static scheduler (3) is discussed in Section 3.4.

find a compromise between a low overhead static and a high overhead dynamic
scheduling for applications with data-dependent data-flow. Lee demonstrates ef-
ficient hybrid scheduling techniques that employ dynamic scheduling only when
absolutely required. For data-flow models such as BDF and IDF, although it is
impossible to deterministically optimize the statically computed schedules, good
compile-time decisions frequently remove the need for dynamic scheduling or load
balancing [HL97, Ha92, HL91].

A goal of this work is to expand on the taxonomy in [Lee91] by identifying its
analogue for SCORE. To run an application on a reconfigurable array, the sched-
uler must perform five specific inter-dependent steps shown on Figure 3.1. One
way to represent a spectrum of SCORE run-time resource management solutions
is as a one-dimensional space of arranged scheduling steps. Each point represents
a scheduling solution and cuts the space into two parts: steps performed dynami-
cally and steps performed statically. For example, in Figure 3.1 point 3 represents
a scheduling solution where steps to the left (Timing and Timeslice Sizing) are per-
formed dynamically, i.e. at run-time. Steps to the right (Place/Route, Resource
Alloc, and Sequence/Temp Partition) are performed statically, i.e. at application
load/install time.

Figure 3.1 shows six possible scheduler implementations that differ in run-
time complexity and overhead as well as scheduling optimality. The boundaries
between these steps are not rigid due to close interdependence between operations.
Nevertheless, consider this diagram to represent feasible implementations of run-
time resource management solutions for SCORE.

Let us look at each scheduling step in detail.
• Sequence/Temporal Partitioning partitions the graph into a sequence of prece-
dence constrained, schedulable sub-graphs. A schedulable subgraph is one
that “fits” on the array. This means that each virtual page requires a physi-
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Figure 6.3: Spectrum of static vs. dynamic scheduling

by cycle behavior. In our streaming synthesis methodology, this level of schedul-

ing is implicitly determined by flow control and is always dynamic. Markovskiy et

al. go on to implement a fully static, quasi-static, and fully dynamic scheduler for

SCORE. Their key result is that a static scheduler saves significant run-time overhead

compared to a dynamic scheduler, and furthermore, it generates a superior schedule

thanks to more comprehensive, offline graph analysis. The quasi-static scheduler im-

proves on the static scheduler by using deadlock detection hardware and terminating

a time slice immediately if all pages are stalled.

Temporal partitioning, i.e. assigning pages to contexts, is a particularly interest-

ing optimization problem for virtual paged platforms. The most important criterion

for this assignment is to avoid streaming feedback loops between contexts. Feedback

loops generally cannot be pipelined, and consequently, cannot accumulate many to-

kens in stream buffers. Often, there is only one token propagating around a feedback

loop. Thus, an inter-context feedback loop would make a context exhaust its in-

put buffers and require swapping contexts almost immediately, yielding an execution

dominated by context swap time. This situation is equivalent to thrashing in virtual

memory, where a program accesses a working set that is larger than physical memory.

In our case, the working set is the feedback loop that did not fit into one context.
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A secondary criterion for temporal partitioning is to prevent page stalls due to

mismatched communication rates. If a context contains pages with mismatched rates,

then some pages will frequently stall waiting for slow input or output. Every such stall

lengthens the total execution time. On the other hand, if a context contained only rate

matched pages, then no page would stall. A context containing low throughput pages

might run for a longer time slice than one containing high throughput pages, because

it would take longer to exhaust its buffers. Nevertheless, with fewer stalls, total

runtime would be improved. Markovskiy et al. [Markovskiy et al., 2002] [Markovsky,

2004] show that page utilization—the inverse of stall rate—can be modeled using SDF

balance equations. Balance equations are posed based on the average consumption

and production rate of each page (tokens per firing) and solved to compute relative

firing rates, in the form of a repetitions vector qqq. The firing rates are normalized so

that the greatest count is one, corresponding to the architectural maximum of one

firing per clock period. These normalized firing rates now indicate utilization, and

any rate less than one indicates stalling. The total utilization of a context is additive

across all pages:
∑

i qqqi. Markovskiy et al. provide a brute force approach to find a

multi-way partitioning with maximum utilization, as well as several heuristics based

on graph topology. A key result is that, for the multimedia applications studied—the

same as our seven application in Chapter 4 which have minimal feedback—topology

based heuristics (min-cut, topological sort) yield utilizations close to the theoretical

maximum.

6.3.4.3 Bufferlock

An additional component of page scheduling is bufferlock detection and recovery.

Bufferlock is an artificial deadlock associated with an overflow of an undersized buffer,

studied in Chapter 5. In general, bufferlock is an undecidable, and hence unpre-

ventable artifact in dynamic rate process networks. Parks [Parks, 1995] prescribes
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a dynamic approach for dealing with bufferlock, simply by expanding the smallest

full buffer when bufferlock occurs. While a single context platform cannot do this,

a paged virtual platform with a dynamic scheduler certainly can. Buffer expansion

can be accomplished most simply by chaining the full buffer with a secondary buffer,

implemented in another streaming memory. However, even this seemingly simple real-

location typically requires evicting a streaming memory from the temporal partition.

Thus, bufferlock recovery requires computing a new schedule online. Nevertheless,

the new schedule can be retained and reused as a static schedule thereafter (until the

next bufferlock), to avoid the overhead of fully dynamic scheduling.

6.3.4.4 Fault Tolerance

Online scheduling can be used to support fault tolerance by avoiding faulty pages

or faulty stream routes. A fault in one page would not affect other pages or the

stream network, so that page can simply be removed from the available resource

pool. Similarly, a faulty route on the stream network can be avoided during online

place and route of indivisible pages. The new schedule can be retained and reused as

a static schedule thereafter, to avoid the overhead of fully dynamic scheduling.

6.3.4.5 Hardware Assisted Online Scheduling

The place and route component of scheduling may be very computationally expensive,

so much as to swamp execution time if it were performed online. However, this step

can be accelerated using the reconfigurable platform itself. Wrighton et al. [Wrighton

and DeHon, 2003] [Wrighton, 2003] describe hardware assisted placement using a

systolic implementation of simulated annealing in FPGAs. Huang et al. [Huang,

2004] [Huang et al., 2003] describe hardware assisted routing using a modification to

the programmable interconnect of an FPGA. These approaches accelerate PAR by
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up to thousands of times compared to software implementations, yielding PAR times

on the order of seconds. Those times are quite reasonable for online scheduling in

many circumstances, certainly for the case of bufferlock recovery.

6.4 Page Partitioning

The primary challenge in compiling to a paged streaming platform is page partition-

ing. While it is possible for a designer to manually target every SFSM to fit in a

page, that process is laborious and undermines design reuse. Instead, we desire an

automatic approach for restructuring an application, converting a network of arbi-

trarily sized, stream connected SFSMs, into a network of fixed size, stream connected

pages. This task is complicated by the fact that precise page-to-page communica-

tion delay is not known during partitioning. Communication delay depends on page

placement, and worse, on device size (number of pages), which may not be known

at compile time. With virtualization, communication delay also depends on the page

schedule—it may be indefinitely long for a stream that crosses between contexts.

Page partitioning must strive to avoid page-to-page feedback loops, since loops with

long communication delay would degrade system throughput. When loops cannot

be contained within a page, the partitioner must strive to only expose low frequency

streams, to minimize their effect on system throughput. Thus, page partitioning for

process networks is more complicated than traditional circuit partitioning. In this

section, we discuss new techniques for page partitioning.

6.4.1 Page Partitioning Flow

Page partitioning can be thought of as two tasks: decomposing components larger

than a page, and packing components to fill pages. If every SFSM is smaller than a
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page, then page packing can be posed as a clustering problem, extending the through-

put aware techniques of Section 5.3 to model the impact of inter-page delay on system

throughput. To avoid fragmentation (underuse of page area), we should expose as

many graph components as possible. This can be done by partially decomposing

SFSMs, even ones that are already smaller than a page. SFSM decomposition must

be careful not to introduce critical feedback loops between pages. In general, this is

difficult, because an SFSM contains control loops and data dependencies. Instead,

we propose decomposing an SFSM in two phases: pipeline extraction, which extracts

loop-free pipelines from the SFSM datapath, and SFSM decomposition of the re-

maining cyclic core with knowledge of rates. Each extracted pipeline can be further

decomposed into a DAG of datapath operators, to provide additional freedom for

page packing (each such operator is a small, single rate, SDF actor).

The multi-phase flow for page partitioning, illustrated in Figure 6.4, is:

1. Pipeline Extraction (Section 6.4.2)

2. SFSM Decomposition (Section 6.4.3)

3. Page Packing (Section 6.4.4)

We describe these phases next. We also consider an approach for simultaneous SFSM

decomposition and page packing in Section 6.4.5.

6.4.2 Pipeline Extraction

Pipeline extraction is a means to partially decompose an SFSM, without introducing

feedback loops, by hoisting parts of the datapath out as input or output filters. Our

success with stream enabled logic pipelining (Sections 3.7.3-3.7.4 and 4.4) indicates

that SFSMs often contain pipelinable datapath components connected to stream input

and output. Circuit level pipelining decouples those components from the SFSM for

the purpose of placement. We wish to emulate this decoupling earlier in the flow,

239



Chapter 6. Streaming Programmable PlatformsNew Techniques

Pipeline Extraction

Communication Latency

Sensitive Compilation

with Streams

A B

A’’

B’

A’’’A’

B’’

A’’

B’

A’’’A’

B’’

A’’ BA’’’A’

SFSM Decomposition

Page Packing

Figure 6.4: Page Partitioning Flow

for use with page partitioning. Conceptually, at the TDF source level, we wish to

extract control-independent def-use chains originating at stream input operations or

terminating at stream output operations.

Pipeline extraction is analogous to loop factoring. An SFSM’s control flow is es-

sentially an infinite loop containing a switch statement based on state, with each state

case being a statement list that begins with stream reads. Input pipeline extraction

can be posed as hoisting subexpressions without loop-carried dependencies out to an

earlier loop, and modifying the stream read to receive data from that loop. Similarly,

output pipeline extraction is hoisting out to a later loop. The resulting loops represent

SFSMs in series connection. For example, consider an SFSM where only one state I
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reads input i: state I(i): { t=i+1; ... }. The expression i+1 can be extracted

into an input pipeline, leaving a smaller SFSM: state I(i’): { t=i’; ... }. An

extracted subexpression may span several statements, even across to another state.

An extracted subexpression may also be common to several states, but it would be

chosen so that no state is needed in the extracted pipeline. An extracted pipeline is

merely a DAG of datapath operations corresponding to the extracted subexpression.

It can be implemented as a single-state, fully pipelineable SFSM. It can also be fully

exposed to the page packer as a DAG of SDF actors, to provide more freedom and

to reduce fragmentation.

Our early experiments indicate that pipeline extraction is a valuable technique.

Among the seven multimedia applications from Chapter 4, roughly 30% of application

area is in pure pipelines, i.e. single state SFSMs with no loop-carried dependencies.

Among them are our largest and slowest SFSMs, such as discrete cosine transforms.

Pipeline extraction would fully decompose those SFSMs. A simple implementation

of pipeline extraction is also able to extract some components from nearly all SFSMs.

However, several large, cyclic cores remain that need to be decomposed by secondary

means in order to fit on a page.

Pipeline extraction can be used as a pipelining technique for general optimization,

independent of page partitioning. It can be used in conjunction with stream enabled

logic pipelining for better coverage. The two approaches, though similar, are likely to

discover slightly different opportunities for pipelining, since one has visibility of source

code and control flow, while the other has visibility of the circuit implementation.

6.4.3 SFSM Decomposition

SFSM decomposition seeks to partition a large SFSM into communicating, page size

SFSMs with minimum inter-page communication. Traditional state machine decom-
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position techniques, e.g. for minimum logic [Devadas and Newton, 1989] or minimum

I/O count [Kuo et al., 1995], are generally inappropriate, because they introduce

cycle-by-cycle feedback between sub-machines, and they do not model datapaths.

Tight feedback would devastate performance in the presence of inter-page delay. In

principle, datapaths can be modeled as boolean logic and merged into the state ma-

chine, but this precludes the use of hardware datapath resources such as carry chains

and multipliers, so it is inadvisable. We need a new technique for performance ori-

ented decomposition of a state machine with datapath (FSMD), under area and I/O

constraints, in the presence of long communication delay.

6.4.3.1 State Clustering

We model SFSM decomposition as state clustering. We treat each state and its action

as an indivisible unit, and we cluster those units into pages. Our intent is to contain

control flow within a page whenever possible, and to minimize transfer of control

between pages, since such a transfer would incur high delay. This concept is similar

to Fisher’s trace scheduling [Fisher, 1981], which optimizes common paths and loops

of control flow (i.e. traces) in sequential code. It is also similar to the power-oriented

FSM decomposition technique of Benini et al. [Benini et al., 1998], which clusters

states into partitions and saves power since only one partition is active at a time. In a

state clustering formulation, only the partition containing the present state is active,

while other partitions wait. With virtual paging, inactive partitions might even be

paged out to free resources.

State clustering for minimum inter-page transitions can be formulated as an area-

constrained, I/O-constrained, min-cut partitioning of the state flow graph, where

each transition edge is weighted by its state transition probability. The total cut

weight equals the probability of inter-page transition. Figure 6.5 shows a sample

state flow graph for clustering. Each node denotes a state and its action. Each black

242



Chapter 6. Streaming Programmable Platforms

1/11/03 Eylon Caspi – DSA Retreat 2003 4

b41

bi1 bi2

bo1 bo2

b34

b13b12

p24

p12 p13

p24 p34

State Clustering Example

S2 S3

S1

S4

State flow

Data  flow

Figure 6.5: SFSM decomposition as state clustering

edge denotes a state transition, weighted by its probability p. Each red edge denotes

dataflow of b bits through registers or streams. A min-cut to minimize transition

probability might try to contain the loop S1-S3-S4. However, the page I/O limitation

might prevent this partitioning, if b12 and b24 are large enough.

6.4.3.2 Graph Conversion

We associate each cut edge with an inter-cluster stream. A cut state transition edge

infers a control transfer stream. An active producer sends a token on this stream

before becoming inactive, and an inactive consumer receives the token to become

active. A cut dataflow edge is more complicated. Suppose dataflow edges are def-use

chains. A register definition (assignment statement) generally does not know which

of several uses will actually be evaluated. Sending a value token to all uses requires
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those uses to consume and clear the token, whether they need it or not. Otherwise,

the token would remain on the stream and block future communication. This scheme

requires all sub-machines to remain active to clear tokens, wasting power in a single-

context execution, and wasting time in a multi-context execution. To make matters

worse, a register use generally does not know which of several definitions was actually

evaluated. Thus, it cannot know which tokens to clear without additional, control

flow information. Thus, def-use chains cannot infer data streams.

Registers and streams constitute shared state among all sub-machines. In a sense,

we need a sequential consistency model for multiple accessors of that state. There

are at least two ways to reason about maintaining consistency: distributed shared

memory, and closures. In a distributed, shared memory model, every register and

stream have a home page, and values are transfered between homes and accessors.

We can think of an uncached model, where every read/write communicates with a

home page, or a cached model, where values are forwarded among accessors before

returning to a home page. Arbitrary forwarding is not necessary, since sub-machines

are not truly concurrent. Instead, value forwarding is better modeled as a trans-

mission of closure (total state) between pages during a control transfer. To reduce

communication, a transfer may contain only part of the closure, if the remainder will

not be used until control returns. Parts of the closure may also be sent ahead, past

the immediate next state, to avoid forwarding values through intermediate pages that

do not actually need them. Knowing where to forward values requires control flow

analysis. Having chosen a particular implementation of sequential consistency, that

implementation can be modeled directly in the state clustering graph.

For example, we implement a simple, request-reply model for shared registers and

streams (equivalent to uncached, distributed, shared memory). Every register and

stream has a home page, and every external access requires a request-reply transac-

tion between pages. We model request-reply transactions directly in the state flow,
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Figure 6.6: Dismantling register access to model request-reply for SFSM decomposition

as a source level transformation. We dismantle each state action into a sequence

of states, with a request-reply-receive subsequence for every register/stream access.

We pre-cluster all the reply nodes of a register/stream before graph partitioning to

denote that object’s home page. We also pre-cluster all the request and receive nodes

of each original action statement. After partitioning, a request-reply-receive subse-

quence that crosses page boundaries will infer an inter-page transfer of control and

data, while a subsequence within a page will be collapsed back into a single state.

Figure 6.6 illustrates this dismantling and pre-clustering for a write and subsequent

read of a register x. Note that all data edges are either within pre-clusters or between

corresponding request-reply-receive nodes, so a cut data edge infers a proper stream.

Dismantling stream consumption/production requires additional care. Stream

production is modeled as a register write. Stream consumption is modeled as a reg-

ister write of input history register(s), while a use of a stream in a state action is

modeled as a read of input history register(s). Signatures with multiple inputs are
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dismantled into sequences of single-input states using sequential firing rule evaluation

(Section 2.4.3.5). Subsets of signatures that are not sequential (e.g. state foo(x):X;

state foo(y):Y) cannot be dismantled and are instead pre-clustered, so all associ-

ated input streams will have the same home page. Dismantling increases the state

count by about 100x (after removing empty states), but state sequences within a

cluster can be remerged after state clustering.

A state cluster is turned into a sub-machine SFSM by adding a special “wait”

state. Whenever the sub-machine transfers control to another sub-machine, it transi-

tions to its wait state to await a return of control. The wait state has a separate firing

signature for every return path, each consuming a (control,data) tuple. Inter-page

I/O requirements can be reduced by grouping all the control transfer streams between

a pair of sub-machines and binary-encoding them to denote next state. The firing

logic of the wait state may also be simplified by factoring it into several wait states,

depending on which next states are expected.

6.4.3.3 Graph Partitioning Formulation

The state clustering problem can be formally stated as a multi-way graph partitioning

problem. We unify state and data edges by creating one kind of edge with two weights:

a dataflow edge has probability p = 0 and breadth b, while a state flow edge has

probability p and breadth b = 1 for its control transfer token.

Area Constrained, I/O Constrained, Cut Optimal, K-Way Partitioning.

Given a graph G = (V, E) with node area A : V → R+ (where R+ is the positive

reals), edge weight wp : E → R+ (denoting probability p), edge weight wb : E → R+

(denoting data breadth b), partition area Amax > 0, partition I/O count Bmax >

0, and partition count K, find a subset cover P ⊂ ℘(V ) consisting of K disjoint

subsets P ⊂ V satisfying the area constraint: A(P ) ≤ Amax ∀P , satisfying the I/O

constraint: wb(P ) ≤ Bmax ∀P , and minimizing total cut weight: wp(P). We define
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a partition cutset as: E(P ) = {euv ∈ E : (u ∈ P ) ⊕ (v ∈ P )}, the total cutset as:

E = {euv ∈ E : ∃P ∈ P s.t. (u ∈ P ) ⊕ (v ∈ P )}, and the constraint/minimization

terms as: A(P ) =
∑

v∈P A(v), wb(P ) =
∑

e∈E(P ) wp(e), wp(P ) =
∑

e∈E(P ) wb(e),

wp(P) =
∑

e∈E wb(e) = (1/2)
∑

P∈P wp(P ).

It is possible to approximate the K-way partitioning problem by iterated bipar-

titioning. Each iteration finds a partition P subject to a modified, balanced area

constraint, Amin ≤ A(P ) ≤ Amax, and removes it from V .

Area Balanced, I/O Constrained, Cut Optimal Bipartitioning. Given

G, A, wp, wb, Amin, Amax, Bmax, find a partition P ⊂ V satisfying: Amin ≤ A(P ) ≤

Amax, satisfying: wb(P ) ≤ Bmax, and minimizing: wp(P ).

The simpler problem of area-balanced bipartitioning, without optimizing a sec-

ondary weight wp, is known to be NP-complete [Yang and Wong, 1994]. We therefore

consider heuristic approaches.

6.4.3.4 Implementation and Preliminary Results

Our first attempt at state clustering tackled the iterated bipartitioning problem using

an adaptation of Wong’s flow-based balanced bipartitioning (FBB) [Yang and Wong,

1994]. FBB satisfies area and I/O constraints, but it does not directly minimize a

secondary weight (probability). To find a partition, FBB computes a min-cut of the

I/O weight. If the partition does not satisfy the area constraint, then it is expanded

or shrunk by pulling one node across the cut and merging it, then computing the

next best cut. The iteration continues until either the area constraint is satisfied

or the I/O constraint is violated. FBB considers only one weight w, which can be

the I/O weight wb (without optimizing probabilities) or the probability weight wp

(without constraining I/O). Applying FBB to probability weights, we found that the

multimedia applications from Chapter 4 can be partitioned with no more than 1%-2%

of dynamic state transitions going between pages. This result is encouraging, since
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it would tolerate high inter-page delays with little performance loss. For example,

if a transition within a page takes 1 clock period, while a transition between pages

takes 10 clock periods, Amdahl’s Law2 indicates a total slowdown of only about 10%-

20%. However, this result does not constrain I/O, and doing so would increase the

probability cut.

We can adapt FBB to simultaneously constrain I/O and optimize probabilities as

follows. First, apply FBB to probability weights wb and iterate until either finding a

valid partition or failing when no further node merging is possible (when the graph

has two nodes). Upon failing, start over, apply FBB to I/O weights wp, iterate until

the I/O constraint is violated, and choose the intermediate cut with best probability

cut weight. The quality of intermediate cuts depends on which node is chosen to

merge across the cut, and it may be improved with multiple tries and look-ahead.

It is also possible to use a mixed weight in the first phase, w = (c)wb + (1 − c)wp

with c ∈ [0, 1], in the hopes of finding an I/O constrained solution earlier, with better

probability cut.

DeHon [DeHon, 2002] provides an algorithm for the K-way partitioning problem.

The graph nodes are first ordered in one dimension, then covered using disjoint inter-

vals, or extents. The ordering step is heuristic, bringing nodes closer to create natural

clusters that are tightly bound by large edge weights. The covering step then chooses

extents that respect area and I/O constraints. DeHon implements a spectral ordering,

which minimizes total squared distance within the one dimensional order, but with

distances scaled by a mixed weight: w = (c)wb + (1 − c)wp, c ∈ [0, 1]. The covering

step uses a dynamic programming approach to choose the set of valid extents with

least cost, that cost being either the total probability cut (performance driven) or the

2 Amdahl’s Law computes the change in system performance when only part of the execution
time is modified. If a fraction p of execution time T is scaled by a factor f , then the new execution
time is: T ′ = Tpf +T (1−p), and the scaling of execution time is: T ′/T = pf +(1−p) = 1−p(1−f).
In our case, with 2% of execution time scaled by 10x, slowdown is: T ′/T = (1−0.02(1−10)) = 1.18.
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total number of pages (area driven). The dynamic programming formulation com-

putes the best midpoint for splitting each extent, considering extents in order from

narrowest to widest. When splitting an extent [s, e] at midpoint m (where s, e,m are

start/end/midpoint indexes within the order), we have: A[s, e] = A[s, m] + A[m, e]

and: w[s, e] = w[s, m] + w[m, e] − 2w([s, m] ↔ [m, e]). Applying this partitioning

approach to JPEG Encode from Chapter 4 yields total probability cuts under 2%,

similar to our optimistic FBB results that lacked I/O constraints.

6.4.3.5 Area Model

SFSM decomposition requires an accurate area model A(v) for every state and its

action. In Chapter 4, we found that datapaths constitute roughly 94% of SFSM

area3. Thus, it may suffice to model only datapath area. In our experiments, we

estimated areas from individual datapath modules parameterized by bit width (n-

bit adders, n-bit comparators, etc.). However, that estimate did not account for

resource sharing between states nor for any optimizations in the Verilog back-end.

In principle, datapath sharing between states can be incorporated into the graph

partitioning problem by modifying the definition of partition area A(P ). Partition

area with datapth sharing remains monotonic in the number of nodes |P |. Back-

end optimizations can be approximated by incorporating their effect into datapath

module area estimates. Rather than taking areas from separately compiled datapath

modules, it may be possible to compile entire, unpartitioned SFSMs, pretend that

their respective area is a superposition of datapath module areas, and solve for those

module areas.

3 From Table 4.2, datapaths constitute 58.0% of application area, while SFSMs constitute 61.7%
of application area. Thus, datapaths constitute (58.0/61.7) = 94% of SFSM area.
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6.4.4 Page Packing

The goal of page packing is to cluster small components into pages, minimizing

throughput loss due to inter-page delay, with a secondary goal of minimizing frag-

mentation. We do not know the precise inter-page delay during packing, since it will

depend on placement, device size, and virtual page schedule. Instead, we can as-

sume a constant inter-page delay δ. We apply the same ideas from throughput aware

placement in Section 5.3.2 and extend them to deal with partitioning. To model

throughput, we unroll the process network into a representative SRSDF graph and

use a cycle slack analysis. Before partitioning, we pre-cluster replicant nodes and

streams to properly capture their respective area and bit width.

6.4.4.1 Graph Partitioning Formulation

The page packing problem can be formally stated as a multi-way graph partitioning

problem on a representative SRSDF graph. Our graph representation is similar to

a retiming graph, but we associate a node’s delay with its outgoing edges, rather

than with the node itself. Also, we treat all delays as pipeline delays, measured in

whole clock periods. Stream buffers may be represented as additional graph nodes

with non-zero area. Small buffers, intended for implementation in page fabric, would

be naturally clustered into pages. Large or unbounded buffers, intended for imple-

mentation in other resources such as streaming memories, must be prevented from

clustering into pages.

Area Constrained, I/O Constrained, Throughput Optimal, K-Way Par-

titioning. Given a graph G = (V, E) with node area A : V → R+ (where R+ is the

positive reals), edge weight wb : E → R+ (denoting data breadth b), edge weight

wr : E → R+ (denoting number of tokens r), edge weight wd : E → R+ (denot-

ing pipeline delay d), inter-partition delay δ > 0, partition area Amax > 0, partition

250



Chapter 6. Streaming Programmable Platforms

I/O count Bmax > 0, and partition count K, find a subset cover P ⊂ ℘(V ) consist-

ing of K disjoint subsets P ⊂ V satisfying the area constraint: A(P ) ≤ Amax ∀P ,

satisfying the I/O constraint: wb(P ) ≤ Bmax ∀P , and minimizing the partitioned

token period T ′ (average clock periods per token). We define a partition cutset

as: E(P ) = {euv ∈ E : (u ∈ P ) ⊕ (v ∈ P )}, the total cutset as: E = {euv ∈

E : ∃P ∈ P s.t. (u ∈ P ) ⊕ (v ∈ P )}, and the constraint/minimization terms

as: A(P ) =
∑

v∈P A(v), wb(P ) =
∑

e∈E(P ) wp(e), w′
d(e) = wd(e) + δ if e ∈ E or

w′
d(e) = wd(e) otherwise, T ′

C = (
∑

e∈C w′
d(e))/(

∑
e∈C wr(e)) for any cycle C ⊆ E,

T ′ = maxc T ′
c over all cycles C ⊆ E.

It is possible to approximate the K-way partitioning problem by iterated bipar-

titioning. Each iteration finds a partition P subject to a modified, balanced area

constraint, Amin ≤ A(P ) ≤ Amax, and removes it from V . To properly compute

throughput for subsequent partitions, it may be more appropriate not to remove P ,

but to give it zero area: A(v ∈ P ) = 0, and to update the delay of inter-partition

edges: w′
d(e) = wd(e) + δ.

Area Balanced, I/O Constrained, Throughput Optimal Bipartitioning.

Given G, A, wb, wr, wd, δ, Amin, Amax, Bmax, find a partition P ⊂ V satisfying: Amin ≤

A(P ) ≤ Amax, satisfying: wb(P ) ≤ Bmax, and minimizing: T ′.

6.4.4.2 Implementation

It is attractive to recast the page packing problem as a min-cut partitioning problem,

since we have already developed min-cut algorithms for SFSM decomposition (Sec-

tion 6.4.3). A possible cut weight is the clock periods “over budget” that an edge

would have if cut. Consider a graph with token period T and an edge e with cycle-

specific token period T (e) and cycle slack (T−T (e)). Cutting the edge adds δ periods.

If δ ≤ (T − T (e)), then the graph throughput remains unaffected. If δ > (T − T (e)),

then the cycle slack is exceeded by X = δ−(T−T (e)) periods, and the graph through-
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put degrades. That excess is a reasonable cut weight wp(e) = X for a throughput

oriented, min-cut partitioner. However, that weight is only an approximation, as it

is not properly additive over a cut of multiple edges. For example, if two edges on

the same cycle C are cut, the cycle’s excess over budget is: X ′ = 2δ − (T − TC),

whereas the total cut weight is: 2X = 2δ − 2(T − TC), which is an underestimate.

Similarly, if two edges on unrelated cycles C1, C2 are cut, The system excess over

budget is: X ′ = max{X1, X2} = δ−T +max{TC1, TC2}, whereas the total cut weight

is: X = (X1 + X2) = 2(δ − T ) + TC1 + TC2, which is an overestimate.

A more accurate approach for page packing might be to adapt the performance

driven partitioning of Liu et al. [Liu et al., 1997]. Their approach is circuit level,

using a retiming analysis to model clock rate. However, we can generalize from clock

period φ to token period T , as before. Their algorithm provides bipartitioning under

area constraint, I/O constraint, clock period constraint, and latency constraints. It

is posed as finding a vector of boolean, partition membership variables, using La-

grangian relaxation to solve a constrained minimization of inter-partition wire count.

We can convert their clock period (token period) constraint into an optimization by

repartitioning within a binary search for the smallest feasible period. We do not need

the latency constraints. And we can address area balancing/fragmentation by adding

a minimum area constraint. We can then perform iterated bipartitioning for page

packing.

6.4.4.3 Pipeline Recomposition

We proposed that extracted pipelines be fully exposed as DAGs of ALU-level actors,

to provide more freedom for page packing. Following page packing, the pipelines

within each page must be recomposed and implemented as SFSMs. They may be

pipelined for high clock rate by stream enabled logic pipelining, or by register/queue

insertion before recomposition. Logic pipeline depths should be chosen before page
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packing, so their effect on system throughput will be considered during packing.

However, clock-optimal pipeline depths should be based on synthesis, which is more

accurate after page packing. A hybrid approach might choose preliminary depths be-

fore page packing (possibly based on preliminary, pre-packing synthesis), then choose

final depths after page packing.

6.4.5 Unified SFSM Decomposition and Page Packing

Page partitioning would be simpler and probably more effective if performed in fewer

phases. It may be possible to unify SFSM decomposition and page packing by ex-

posing SFSM states in a fine-grained process network, then clustering those states

as a consequence of page packing. We do not wish to implement states as separate

processes, only to analyze them as such during page packing. State clusters would be

converted back into SFSMs after partitioning. The challenge lies in devising an SFSM-

to-PN translation such that: (1) inter-state communication affects system throughput

in a meaningful way, (2) inter-state communication infers streams after partitioning,

and (3) state clusters can be recomposed into efficient, sub-machine SFSMs.

253



Chapter 7

Conclusion

We conclude this work with a summary of the entire document, a discussion of open

questions and future work, and a brief history of the project.

7.1 Summary

RTL design methodologies are failing to keep up with Moore’s Law technology im-

provements and modern design challenges. The RTL paradigm of manual design with

fully exposed device timing is laborious, error prone, and unable to deal effectively

with increasingly dominant interconnect delay. It inherently undermines reuse by ty-

ing designs to device timing and other parameters, necessitating significant redesign

at every new device generation.

We have proposed an alternative, streaming design methodology, rooted in an

abstraction of communication timing. We introduced the stream, a FIFO channel

with blocking read and buffering, as a timing tolerant mechanism for composing

modules into systems. Streams naturally accommodate long or unpredictable inter-

connect delay. The asynchronous nature of streams supports a more modular design

methodology, making modules compatible in more timing contexts, and admitting
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optimizations that change module timing behavior, such as pipelining. At the same

time, the streaming discipline and connection topology expose system-level informa-

tion about module dependencies and concurrency, enabling system-level analyses that

drive optimizations of modules and communication. By supporting streaming system

design with a language and compiler, we not only facilitate design, we also make

a design retargetable across device generations, promoting reuse at the module and

system levels.

At the heart of our work is a formal model and a language for stream based design.

We introduced TDF Process Networks (TDFPN), a model of concurrent, streaming

finite state machines (SFSMs) whose actions are guarded by state and input/output

readiness. Like other process network models, ours is deterministic regardless of

timing and scheduling. It supports dynamic dataflow rates and requires potentially

unbounded buffering for streams. However, for practical implementation in hardware,

we require that stream buffers be statically sized by analysis and/or programmer

annotation. Our model strongly resembles Lee’s dataflow process networks (DFPN)

[Lee and Parks, 1995], and we proved equivalence between variants of TDFPN and

DFPN. We adapted and extended the denotational semantics of DFPN for TDFPN,

with allowance for state, and with care to retain determinism in the presence of

multiple, enabled firing rules. We introduced TDF (Task Description Format), a

concrete language for TDFPN, which resembles a behavioral hardware description

language with built-in streams.

We have developed a synthesis methodology to compile TDF programs to a com-

mercial FPGA. Our methodology is retargetable, using Verilog as an intermediate

form and relying on commercial back-end tools to complete the device mapping. For

efficiency, we concentrate specifically on Xilinx Virtex-II Pro series FPGAs. Our

synthesis methodology includes automatic generation of streams, stream buffers, and

stream flow control for SFSMs. We developed several kinds of stream buffers to serve
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different purposes, including (1) an enabled register for registering outputs or retiming

into logic, (2) a relay station for pipelining long distance streams, (3) a shift register

queue (using SRL16) for medium capacity buffers, and (4) a RAM-based queue for

large capacity buffers. We also developed mechanisms to pipeline streams and SFSMs

for operation at high clock rates. Our SFSM pipelining approach is limited, based on

retiming registers from streams, but it is sufficient for many signal processing tasks

that are dominated by feed-forward datapaths.

We evaluated our synthesis methodology by using it to compile seven multimedia

applications to the Xilinx XC2VP70 FPGA. Our applications include MPEG video

coders, JPEG and wavelet image coders, and an IIR filter. We found that stream

flow control is small and fast, comprising 6% of application area, and never limit-

ing performance. We found that SRL16-based stream buffers comprise a non-trivial

38% of application area, but they seldom limit performance (they are usually over

200MHz, limiting only 1/3 of the fastest SFSMs). Application area and performance

is otherwise dominated by datapaths, of which about 10% are under 100MHz and re-

quire pipelining. We found that pipelining SFSMs by retiming registers from streams

into datapaths is effective, providing application speedups up to 2.7x, and 1.4x-1.5x

on average, for an area overhead as little as 5%. Pipelining is particularly effective

when combining input and output retiming and when choosing separate depths for

every SFSM/stream. We found that pipelining streams to span long distances has

limited effect on an FPGA, apparently due to increased utilization and congestion

from adding pipelining resources. In response, we suggested a mechanism to allocate

interconnect registers after placement, requiring fewer resources. After removing area

constraints to relieve congestion, we found that one level of interconnect pipelining

provided 15% speedup using only 3-6% additional logic cells. However, our applica-

tions did not benefit from any more than one level of interconnect pipelining. This

last observation suggests that existing FPGAs, at speeds of 100-200MHz, do not yet
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need deeply pipelined routes. Nevertheless, as interconnect delay continues to grow,

future, larger FPGAs will be forced to provide more efficient hardware and software

mechanisms for pipelined communication.

We proposed a comprehensive, system-level, optimization flow to support efficient

mapping to FPGAs. These optimizations rely implicitly on streaming dataflow struc-

ture, so they would not be possible in RTL-based design flows. We tackled the issue of

communication buffering and pipelining in several phases, providing lower bounds for

correctness, and adding buffering/pipelining to best retain throughput in the presence

of long interconnect delay. First, we developed an analysis of minimum, deadlock free

buffer sizes, based on state space enumeration and automata composition. The anal-

ysis may fail to bound some streams, since it is answering an undecidable question,

but it is structured to bound at least some streams and to request explicit bounds for

the rest. We developed an analysis of token throughput for process networks, using

it to identify non-critical paths that can tolerate pipelining, and critical paths that

would degrade throughput if pipelined. We applied this throughput model to develop

a stream-aware approach to placement, which knows that streams may be pipelined

and seeks to minimize the effect of long, pipelined routes on system throughput. We

also applied the throughput model to guide SFSM pipelining and area-time transfor-

mations, so as to exploit non-critical paths and avoid over-pipelining critical feedback

loops. We developed a retiming-based analysis to balance pipeline depths, even after

placement, so as to retain maximum throughput.

Finally, we discussed efficient platform support for streaming. Programmable

platforms are invaluable to future systems development, since they obviate the need

for chip development (which is expensive, complicated, and slow), and since they can

promote better reuse by casting a system as software. Today’s platforms, such as

FPGAs, use the same RTL-based design methodology as ASICs, so their productiv-

ity and performance will not scale well into the future without new techniques such
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as streaming. We proposed incremental support for streaming by adding specialized

resources to an FPGA, including pipelined stream interconnect, stream buffer queues,

and streaming memories. We proposed more comprehensive support for streaming

in a paged platform, which decomposes an FPGA into a two-level hierarchy: con-

ventional inside a page, and streaming between pages. A two-level hierarchy may

improve circuit area, power, and delay, and may also improve place and route times,

but it introduces a new challenge of partitioning an application into stream-connected

pages. We proposed a multi-phase approach for page partitioning, first decomposing

large SFSMs, then composing small ones to fill pages. We also proposed a virtual

paged platform, as in SCORE [Caspi et al., 2000a], which further supports reuse and

scaling by abstracting the platform’s area, or number of pages. With proper run-time

support, this approach would allow an application to run on a family of different de-

vice sizes, and to automatically scale to better performance on larger, next-generation

devices. Virtualization is a natural extension of streaming and requires little hardware

support beyond the conventional, paged platform.

7.2 Open Questions, Future Work

A new design methodology cannot be fully established and tested within the scope of

one Ph.D. dissertation. Although we have established a theoretical foundation and

preliminary implementation for streaming, there are many unimplemented features

and unanswered questions. A substantial body of future work is suggested in Chap-

ters 5 and 6 on optimizations and platforms. Most of the optimizations discussed

therein were implemented only in rudimentary form, or not at all. The streaming

platforms of Chapter 6 have not been built, save for the SCORE platform, which ex-

ists only in simulation. We leave this for future research. Here, we discuss a handful

of additional topics for future work.
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7.2.1 Composition Without Intermediate Queues

Our stream composition methodology (Chapter 3) forbids direct connection of SFSMs

without an intermediate queue. This requirement may waste area when a stream

needs no buffering capacity, and it may introduce unnecessary pipeline delay. For

example, a composition of small, static rate processes often needs no pipelining or

buffering. One way to avoid intermediate queues to compose the processes in question

into a single SFSM. This is the prescribed method for recomposing extracted pipelines

after page partitioning—an SRSDF sub-graph of ALU operations is easily clustered

into a single state SFSM. It is also possible to compose stateful SFSMs into a single,

product SFSM with unified control, based on multi-action automata composition

from Section 5.2.6. Still, it would be simpler for tools to merely connect two SFSMs

together.

The ban on direct connections is an artifact of our stream protocol and firing

guards, which require every SFSM to wait for incoming flow control before decid-

ing to fire and asserting outgoing flow control. This convention is necessary for an

SFSM to synchronize the readiness of multiple streams. However, this convention

also means that two SFSMs wired directly together would wait for each other and

deadlock. It may be possible to modify flow control generation to allow deadlock-

free, direct connection. For example, a chain of stateless, 1-in-1-out SFSMs might

use: ib = ob, ov = iv. However, such modifications must be specialized based on the

stream topology, and they do not work well with fanin/fanout. Direct connection

with unrestricted topology requires a more sophisticated, multi-phase stream proto-

col. A general protocol might request data, wait for acknowledgment, then commit

the transaction—similar to four-phase handshaking in asynchronous circuits. Such

a protocol would incur area overhead, since it requires either more control wires or

more sophisticated control on the original valid/backpressure wires. It would also
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forfeit the ability to pipeline streams by simple insertion of D flip-flops, as well as the

ability to pipeline SFSMs by retiming those flip-flops. The resulting overheads and

complexity may be worse than our original stream protocol with intermediate queues.

7.2.2 Structural Datapath Synthesis

Our synthesis methodology for FPGAs (Chapter 3) uses behavioral Verilog as an

intermediate form, relying on commercial tools to complete the mapping. This ap-

proach allows us to avoid complicated datapath synthesis, to easily retarget to new

devices, and to leverage state-of-the-art optimizations in commercial tools. However,

it leaves us with less control over the resulting SFSM implementation, e.g. datap-

ath sharing across states. Without a structural netlist, the TDF compiler cannot

have an accurate area model for page partitioning nor an accurate timing model for

pipelining and scheduling datapaths. Ultimately, it would be useful for the TDF com-

piler to do its own datapath synthesis and optimizations. An example of structural

synthesis for process networks may be taken from the TinySHIM compiler [Edwards

and Tardieu, 2005]. More powerful techniques for datapath synthesis may be bor-

rowed from hardware compilers such as GarpCC [Callahan and Wawrzynek, 2000]

and CASH [Venkataramani et al., 2004].

7.2.3 SFSM Scheduling

A TDF SFSM resembles a manually scheduled, behavioral state machine. Neverthe-

less, it is fully amenable to automatic rescheduling, thanks to the timing tolerant

nature of our streaming discipline. SFSM state flow is akin to basic block flow in

imperative languages. Consequently, it can be analyzed and optimized by a wealth of

existing compiler techniques for loop scheduling, including strength reduction, loop

unrolling, software pipelining, and modulo scheduling (e.g. [Callahan and Wawrzynek,
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2000]). These techniques are useful for improving clock rate and throughput, and for

implementing time-space trade-offs to match the throughput of several SFSMs. In

addition, loop factoring, loop fusion, and code hoisting are useful for creating or merg-

ing pipelines of SFSMs. We were not able to implement these techniques within the

scope of this project. They are perhaps best incorporated into a higher level compiler

that generates TDF.

7.2.4 Viability of Stream Buffer Bounding

Our analysis of stream buffer bounds (Section 5.2) is based on enumeration of a

potentially very large state space. The viability of this approach depends on being

able to keep the enumeration small, by culling or partitioning the state space (we

discussed a number of techniques to do so). One of our primary techniques is to

abstract away data values, so that the state space represents only named SFSM

states and queue occupancy. However, this simplification fails to distinguish end-of-

stream from valid data, and it fails to identify static behaviors based on constant data

values (fixed loop bounds, enumeration constants for multi-way branches, etc.). For

example, a loop with a fixed iteration count, which terminates by comparing the loop

counter to a constant, will be mistaken to have a data-dependent iteration count. It

remains to be seen how often such idioms appear and cause our analysis to fail to

bound a stream. Some idioms can be transformed away before buffer bounds analysis,

e.g. identifying and unrolling a fixed iteration loop into a sequence of states. It may

also be useful to apply value-range analysis followed by partial evaluation.

It should be possible to extend our buffer bounds analysis to distinguish value

classes or ranges by splitting every stream action and every value test action into a

set of actions. For example, we may distinguish inputing data (i?) from inputing

end-of-stream (eos(i)?). Queue automata would need to be modified to properly
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enqueue value classes, which requires substantially more states. For example, a depth-

N , shift register queue without value classes requires N + 1 states, but with k values

classes it requires
∑N

n=0 kn states. A queue with two value classes, such as data

versus end-of-stream, requires (2N+1− 1) states. Automata compositions would grow

quickly, and buffer bounds analysis would be practical only on a small partition of

the system with shallow queues.

7.2.5 Optimum SFSM and Page Size

SFSM granularity, or size, determines the ratio between compute resources and stream

resources. In general, we wish to favor compute resources, since anything else is

overhead. Small SFSMs require relatively more resources for flow control and stream

buffering, so we prefer to cluster them into large SFSMs. However, an SFSM that

is too large begins to suffer from internal interconnect delays, which reduce clock

rate and increase power consumption. The optimum size of an SFSM remains an

open research question and would be technology dependent. However, automatic

composition and decomposition would be able to reshape SFSMs to match any target

granularity, providing better scaling across device generations. In fact, automatic

composition/decomposition could be used in a design space exploration to find an

optimum SFSM granularity. The automation required is largely the same as page

partitioning (Section 6.4), though it need not obey strict limits on area and I/O.

Page granularity, including size and number of stream ports, poses a similar trade-

off. Small pages require relatively more stream ports and queues, while large pages

incur internal interconnect delay and may lose more area to fragmentation. The

optimum page granularity remains an open research question for SCORE. Automatic

page partitioning could be used to find an optimum page granularity for a given

architecture and technology.
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7.2.6 Exploiting Decidable Programs

Our synthesis approach conservatively treats all TDF programs as general, dynamic

rate process networks. We rely on dynamic self-scheduling using hardware flow con-

trol, and we require an expensive analysis of buffer sizes that is undecidable and may

fail. These costs may be alleviated by identifying and special casing programs that

conform to decidable models such as SDF [Bhattacharyya et al., 1996], CSDF [Bilsen

et al., 1996], or HDF [Girault et al., 1999]. Such programs could be fully analyzed at

compile time for deadlock and resource bounds using fast, decidable algorithms. Such

programs would function reliably with static schedules, which admit smaller hardware

implementations with less reliance on general queues and flow control. Furthermore,

such programs would be easier to parallelize or restructure to match the resources of

a given target platform. Decidable and static rate structures are common in signal

and media processing, and they constitute large portions of our seven applications

from Chapter 4. The difficulty lies in recovering such structures in the presence of

unrestricted state flow. Recovering decidable behavior, or constructing an alternate

language that guarantees decidable behavior, are both open research questions.

Static rate behavior may be obfuscated in TDF by sequencing. An actor where

every loop of states consumes and produces the same number of tokens is SDF, even

though the equivalent SDF firing has been expressed as a sequence of state firings. It

should be possible to automatically collapse the state flow of such an actor into a single

state having one firing rule and one action, making its SDF nature explicit. However,

the context of the actor in a surrounding graph may prohibit the transformation.

Specifically, merging state sequences may reorder the actor’s I/O operations (since

consumption is restricted to happen at TDF state entry), and that reordering may

yield incorrect behavior if a reordered input/output stream pair is connected by an

external feedback loop.
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Dynamic rate behavior may still conform to heterochronous dataflow (HDF) and

be decidable. An HDF actor has one or more states, with each state corresponding

to an SDF actor. In a composition of HDF actors, a product state can be elaborated

into an SDF graph and analyzed for consistency, i.e. balance of consumption and

production, and liveness1. The composition remains balanced with state flow if each

actor is restricted so that a transition to a next state having different I/O rates is per-

mitted only after a complete iteration of a balanced schedule. This restriction allows

HDF programs to incorporate some dynamic rates while remaining fully decidable.

However, this restriction also makes HDF actors context sensitive and less modular,

since their allowable transitions depend on other actors.

HDF behavior in TDF is obfuscated by several issues, which need to be trans-

formed away. First, each TDF actor must be HDF, i.e. each state must have one

input signature and a static number of output tokens. A multi-signature state may

be transformed into a set of single-signature states if its firing rules are sequential (Sec-

tion 2.4.3.5). A dynamic stream write that is guarded by an if-then-else in TDF may

be transformed into an unconditional, HDF-compatible, write by moving its branch

of the if-then-else to a separate state. Second, every product state of the application

must elaborate into a consistent and live SDF graph. SDF behavior, specifically bal-

ance, may be obfuscated by state flow, but it can often be recovered by merging state

sequences, as suggested above. Third, actor transitions must remain unrestricted, so

the balanced schedule of every elaborated SDF graph must contain at most one firing

of any actor that has multiple states with different I/O rates. In general, we cannot

expect this to be true. However, it will be true if every firing consumes and produces

1 The product state of an HDF composition refers to the collective state of all HDF actors. In
contrast, the product state in our TDFPN buffer bounds analysis (Section 5.2) also includes the
occupancy of every stream buffer. Comparing the two approaches, HDF analysis involves a smaller
state space and is decidable, but it requires additional time for consistency and liveness checks at
every product state.
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at most one token per stream2, which is the case when using the synthesizable timing

model of Chapter 3 (before merging state sequences to expose SDF). In some cases,

it is possible to circumvent HDF restrictions on state transitions by clustering actors

and scheduling the clusters hierarchically, described next.

A dynamic rate actor could be “hidden” in an SDF graph by clustering it with

other actors, so that the cluster (1) looks SDF to the outside, and (2) has a local,

HDF schedule with at most one firing of the dynamic rate actor per iteration. The

top level schedule may call for the cluster to fire multiple times, but each such firing

triggers the cluster’s local schedule, which does not restrict the frequency of actor

state transitions. The result is a static, hierarchical schedule. Finding compatible

clusters is not always possible. One approach is to grow a cluster to include primary

inputs/outputs, so the cluster looks like an SDF source/sink to the outside. This is

likely to be possible for the seven multimedia applications from Chapter 4, whose

dynamic rate actors are de/compression stages close to primary inputs/outputs. A

systematic TDF to HDF translation might begin by identifying static rate actors

(SDF), then attempting to cover each dynamic rate actor by the largest, compatible

cluster.

7.3 History and Relation to SCORE

The TDF language and compiler began life as part of the SCORE project. SCORE

(Stream Computations Organized for Reconfigurable Execution) [Caspi et al., 2000a]

attempted to provide a compute model and architectural support to bring software

longevity and scaling to reconfigurable architectures. Our motivation was based on

the observation that reconfigurable architectures have significant performance and

2 Consider an SDF graph where every actor consumes and produces either zero or one token per
stream per firing. If the graph has a balanced schedule, then the minimum schedule will prescribe
either zero or one firing of each actor.
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density advantages over microprocessors, yet they lack the ability of microproces-

sors to retain software across device generations. With Moore’s Law area expansion

and disproportionately growing interconnect delay, the job of constantly recreating

software and systems would only get harder. We saw the need to abstract area and

timing, and the benefit of streaming as a key ingredient. We defined an architec-

ture with virtual, paged hardware and went on to study various approaches to page

scheduling. At the time, we could not obtain applications in an appropriate, process

network form. So we defined a minimal application language, TDF, and began work

on complete applications and automatic compilation.

SCORE took shape as a simulated, highly parameterized device, in conjunction

with run-time software for instantiating, scheduling, and executing paged computa-

tion. The TDF compiler’s initial targets were POSIX threads (conventional software)

and simulated hardware pages, both using similar, C++ code generation. The actual

fabric of a SCORE compute page remained only loosely defined as 512 4-LUTs. Ini-

tial work on hardware compilation assumed a page fabric based on the HSRA [Tsu

et al., 1999], a reconfigurable architecture and test chip recently developed in our

research group. Area and timing estimates were based on HSRA datapath modules,

e.g. an n-bit adder taking so many LUTs and so many nanoseconds. Those estimates

were sufficient for studying page scheduling [Markovskiy et al., 2002] and for our early

work on manual and automatic page partitioning.

Simulation and estimates can only go so far. Our area and timing results from

hardware compilation had questionable value, since our fabric definition was incom-

plete, and our compiler lacked optimizations. Furthermore, the process technology

on which our estimates were based (HSRA in 0.4µm) was quickly becoming outdated.

We needed a more realistic hardware target to pursue further research on page parti-

tioning and optimum page sizing. Yet there were no plans to build a physical SCORE

device.
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We decided to target a hypothetical SCORE device having a commercial FPGA

fabric for its pages. Individual page contexts would be compiled and evaluated using

commercial FPGA tools, yielding realistic area and timing figures. In addition, we

could leverage state-of-the-art optimizations in a commercial compiler by letting it

perform behavioral synthesis, rather than writing our own optimizations and synthe-

sis. Thus, we began work on a Verilog code generator and back-end targeting the

Xilinx Virtex-II Pro FPGA fabric.

Two realizations soon set in. First, efficient synthesis from TDF to FPGA-based

pages was large enough to fill a dissertation. The details required to make stream-

ing efficient in hardware were not trivial, and anything less than a best effort would

obfuscate the study of page partitioning. Second, studying pages in isolation would

tell us nothing about inter-page interconnect and system level effects (area, through-

put, etc.), yielding incomplete guidance for building a real SCORE architecture. We

still needed a more complete hardware target to pursue further research on page

partitioning and SCORE.

Emulating a SCORE device in an FPGA was an option. This had been attempted

early in the SCORE project, only to realize that the firmware for emulating a stream

network, configurable memory blocks, and reconfiguration control left too little space

for compute pages. Thus, this avenue had been abandoned.

Ironically, we now had to put SCORE aside in order to study it further. We

decided to target and study the only complete architecture available: a conventional,

commercial FPGA. Mapping TDF applications to an FPGA would allow us to charac-

terize all the costs and benefits of streaming, including stream transport and detailed

area and timing. However, it would require considering only a single context execu-

tion, temporarily shelving the core concept of hardware virtualization from SCORE.

On the other hand, our streaming methodology would have immediate application

to FPGA based design, for facilitating large system design and overcoming intercon-
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nect delay. And our results for guiding SCORE development would be current and

relevant.

The work in this document represents our effort at building the necessary scaf-

folding to study next generation, stream based, reconfigurable architectures. We

have provided a language, applications, and a compiler targeting FPGAs. Our re-

sults demonstrate the benefit of streaming on conventional architectures and suggest

ways to improve area, performance, and power with new architectural support. Our

vision for future architectures remains SCORE-like, as elaborated in Chapter 6. How-

ever, we had to visit a non-SCORE architecture along the way to make our point.

With this scaffolding in place, future researchers may find it easier to ask the big

questions about software longevity and scaling, automatic compilation, and optimum

architecture points.

In the meantime, we have attempted to provide a meaningful level of design

automation for existing reconfigurable architectures, to facilitate large system design,

to deal with growing interconnect delay, and to promote better modular design and

reuse.

268



Bibliography

[Agarwal et al., 2000] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and
Doug Burger. Clock rate versus IPC: The end of the road for conventional mi-
croarchitectures. In Proceedings of the International Symposium on Computer Ar-
chitecture, pages 248–259, 2000.

[Altera, 2005] DSP builder. http://altera.com/products/software/products/

dsp/dsp-builder.html, 2005. Software from Altera Corp.

[ARM, 1999] ARM Limited. AMBA Specification (Rev 2.0), May 1999. http://www.
arm.com/products/solutions/AMBA Spec.html.

[Arvind et al., 2004] Arvind, Rishiyur S. Nikhil, Daniel Rosenband, and Nirav Dave.
High-level synthesis: An essential ingredient for designing complex ASICs. In
Proceedings of the International Conference on Computer Aided Design (ICCAD
2004), San Jose, CA, November 7–11, 2004.

[Ashcroft et al., 1995] E.A. Ashcroft, A.A. Faustini, R. Jagannathan, and W.W.
Wadge. Multidimensional Programming. Oxford University Press, New York, 1995.

[Benini et al., 1998] Luca Benini, Giovanni De Micheli, and Frederik Vermeulen.
Finite-state machine partitioning for low power. In Proceedings of the 1998 IEEE
International Symposium on Circuits and Systems (ISCAS ’98), May 1998.

[Betz and Rose, 1997] Vaughn Betz and Jonathan Rose. VPR: A new packing, place-
ment, and routing tool for FPGA research. In Wayne Luk, Peter Y. K. Che-
ung, and Manfred Glesner, editors, Proceedings of the International Conference on
Field-Programmable Logic and Applications, number 1304 in LNCS, pages 213–222.
Springer, August 1997.

[Betz et al., 1999] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Archi-
tecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, 101
Philip Drive, Assinippi Park, Norwell, Massachusetts, 02061 USA, 1999.

269



BIBLIOGRAPHY

[Bhattacharyya et al., 1996] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Ed-
ward A. Lee. Software Synthesis from Dataflow Graphs, chapter Synchronous
Dataflow. Kluwer Academic Publishers, 1996.

[Bilsen et al., 1996] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peper-
straete. Cyclo-static dataflow. IEEE Transactions on Signal Processing, 44(2):397–
408, February 1996.

[Bluespec, 2005] Bluespec, Inc. Bluespec Overview, 2005. http://bluespec.com/

pdfs and docs/Bluespec overview.pdf.

[Bove, Jr. and Watlington, 1995] Vincent Michael Bove, Jr. and John A. Watlington.
Cheops: A reconfigurable data-flow system for video processing. IEEE Transactions
on Circuits and Systems for Video Technology, 5(2):140–149, April 1995.

[Buck, 1993] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded
Memory using the Token Flow Model. PhD thesis, University of California, Berke-
ley, 1993. ERL Technical Report 93/69.

[Buck, 1994] Joseph T. Buck. Static scheduling and code generation from dynamic
dataflow graphs with integer-valued control streams. In 28th Asilomar Conference
on Signals, Systems, and Computers, November 1, 1994.

[BWRC, 2005] INSECTA. http://bwrc.eecs.berkeley.edu/Research/Insecta/,
2005. Software from Berkeley Wireless Research Center, U.C. Berkeley.

[Callahan and Wawrzynek, 2000] Timothy J. Callahan and John Wawrzynek. Adapt-
ing Software Pipelining for Reconfigurable Computing. In Proceedings of the In-
ternational Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, 2000.

[Callahan et al., 2000] Timothy J. Callahan, John R. Hauser, and John Wawrzynek.
The garp architecture and C compiler. IEEE Computer, 33(4):62–69, April 2000.

[Carloni and Sangiovanni-Vincentelli, 2000] Luca P. Carloni and Alberto L.
Sangiovanni-Vincentelli. Performance analysis and optimization of latency insen-
sitive systems. In Proceedings of the 37th Design Automation Conference (DAC
’00), pages 361–367, 2000.

[Carloni et al., 2001] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-
Vincentelli. Theory of latency-insensitive design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 20(9):1059–1076, September 2001.

270



BIBLIOGRAPHY

[Carloni et al., 2003] L.P. Carloni, K.L. McMillan, A. Saldanha, and A.L.
Sangiovanni-Vincentelli. A methodology for correct-by-construction latency-
insensitive design. In A. Kuehlmann, editor, The Best of ICCAD—20 Years of
Excellence in Computer-Aided Design, pages 143–158. Kluwer Academic Publish-
ers, 2003.

[Caspi et al., 2000a] Eylon Caspi, Michael Chu, Randy Huang, Nicholas Weaver,
Joseph Yeh, John Wawrzynek, and André DeHon. Stream Computa-
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Joseph Yeh, John Wawrzynek, and André DeHon. Stream computations organized
for reconfigurable execution (SCORE): Extended abstract. In Proceedings of the
International Conference on Field-Programmable Logic and Applications, LNCS,
pages 605–614. Springer-Verlag, August 28–30 2000.

[Caspi, 2005] Eylon Caspi. Programming SCORE. Technical Report UCB/EECS-
2005-25, EECS Department, University of California, Berkeley, December 16, 2005.

[Catapult C, 2005] Catapult C. http://www.mentor.com/products/c-based

design/catapult c synthesis/, 2005. Software from Mentor Graphics Corp.

[Cradle, 2005] Cradle CT3600 multi-processor DSP. http://www.cradle.com/

products/sil 3600 family.shtml, 2005.

[de Alfaro and Henzinger, 2001] Luca de Alfaro and Thomas A. Henzinger. Interface
automata. In Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 109–120, Vienna, Austria, 2001.

[de Kock et al., 2000] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.-Y.
Brunel, W.M. Kruijtzer, P. Lieverse, and K.A. Vissers. Application modeling for
signal processing systems. In Proceedings of the ACM/IEEE Design Automation
Conference, pages 402–405, 2000.

[de Kock, 1999] Erwin de Kock. Video Signal Processor Mapping. PhD thesis, Uni-
versity of Eindhoven, the Netherlands, 1999.
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